• Title/Summary/Keyword: Fines content

Search Result 100, Processing Time 0.025 seconds

Analysis of Shear Resistance Characteristics in Pile-Soil Interface using Large-Scale Direct Shear Test (대형직접전단시험을 통한 말뚝과 지반 경계면의 전단특성 분석)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.61-69
    • /
    • 2022
  • In this study, a large-scale direct shear test was performed to evaluate the shear characteristics of the pile-soil interface according to the fines content and confining pressure conditions as a reasonable evaluation method of the pullout resistance performance of pile considering the soil conditions. It was found that the shear stress was greatly generated under the conditions of high normal stress and low fines content. In addition, the maximum shear stress was found to be rather large under the conditions of the same normal stress and fines content, when pile surface had high roughness. The internal friction angle decreased at the pile-soil interface, when the fines content in the ground increased. On the other hand, the cohesion decreased under the condition of high fines content. And the internal friction angle and cohesion were large regardless of the fines content in the model ground, when the roughness of the pile surface was high.

Analysis on Wettability of Soil Composed of Sand and Fine-Grained Soil with Hydrophobic Surface (모래와 세립토로 구성된 소수성 흙의 습윤성 분석)

  • Jeong-Jun Park;Kicheol Lee;Seung-Kyong You;Jung-Mann Yun;Gigwon Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.43-49
    • /
    • 2023
  • This study described the test results to evaluate the effect of fines content on the wettability of sandy soil composed of hydrophobic soil particles. Wettability was evaluated using the contact angle obtained from the water drop test results for Jumunjin standard sand and sandy soil containing fines content. The test results showed that the wettability of sandy soil composed of sand and fine-grained soil changed depending on the hydrophobic level and fines content. The influence of fines content on the wettability of sandy soil was analyzed. It was found that 1% and 3% hydrophobic sandy soil with 5% fines content decreased by 94.4% and 32.4%, respectively, compared to the contact angle of standard sand. In addition, the contact angle reduction ratio for sandy soil with a 5% hydrophobic level and a fines content of 5% and 10% were 24.4% and 37.3%, respectively. In other words, the wettability of the soils should be evaluated considering the fines content to predict the behavior of contaminants, because the fines content has a significant impact on the value and increase/decrease ratio of the contact angle of sandy soil

Shear Behaviour of Sand-silt Mixture under Low and High Confining Pressures (모래-실트 혼합토의 구속압력에 따른 전단특성 파악)

  • Kim, Uk-Gie;Zhuang, Li
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.27-38
    • /
    • 2015
  • Triaxial tests on sand-silt mixture specimens under low and high confining pressures were performed to understand their shear behaviors. The fines content in the mixture is lower than the threshold value. A series of tests under different conditions including fines contents (0%, 9.8%, 14.7%, 19.6%), density of specimen (controlled by different compaction energies of $E_c=22kJ/m^3$, $E_c=504kJ/m^3$), confining pressure (100 kPa, 1 MPa, 3 MPa, 5 MPa) were performed to investigate influences of these factors. Based on the test results, the threshold fines content, where the dominant structure of mixture changes from sand-matrix to fines-matrix, decreases with the increase of confining pressure. Under very high confining pressures, as a result of sand particle crushing, the behavior of the dense specimen is similar to that of the loose specimen which shows hardening, compression behavior, and shear strength increases with increase of fines content. In conclusion, silt is granular material like sand, and its influence on shear behavior of sand-silt mixture is very different from that of plastic fines on sand-fines mixture.

Influences of Confining Pressure and Fines Content on Compressibility Characteristics of Sand (압력수준과 세립분함유량에 따른 모래의 압축특성)

  • Kim, Uk-Gie;Zhuang, Li;Kim, Ju-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.97-106
    • /
    • 2012
  • In order to investigate mechanics of mixtures composed of sand and non-plastic silt, various specimens, with sand dominating the soil structure, and with varying fines content, fines content varying were produced. Isotropic consolidation tests were performed using high pressure triaxial test apparatus within high pressure levels where sand grain crushing happened. Experimental results showed that compressive curve of sand after yielding contracts to the NCL due to breakage of sand grains. Moreover, with the increase of fines content, coarse grains are surrounded by fines to form cushion effect, which made the breakage of coarse grains become difficult. Therefore, the maximum inclination of compressive curve became flatter and yield stress increased.

Effects of Recycling on Adsorption Characteristics of Cationic Polyacrylamide onto Primary and Secondary Fines (리사이클링 횟수에 따른 일차미세섬유와 이차미세섬유의 폴리아크릴아미드 흡착특성 변화)

  • 주성범;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.2
    • /
    • pp.34-41
    • /
    • 1999
  • Adsorption of cationic polyacrylamide dry strength resins onto the surface of papermaking fibers and fines is critical for their effective utilization. Since dry strength resins are frequently employed when recycled fibers containing a great deal of fines are used as a raw material, their adsorption characteristic onto the recycled fiber fines is of great importance. In this study, effects of recycling on adsorption characteristics of cationic polyacrylamide onto primary and secondary fines were examined. Never dried bleached hardwood kraft pulp was beaten and dried for recycling. In each recycling step the adsorption characteristic of a cationic PAM onto primary and secondary fines was evaluated by kjeldahl nitrogen analysis method. The influence of recycling on water retention value and carboxyl content along with the sheet density and tensile strength was examined. Secondary fines of never dried pulp adsorbed twice as much of C-PAM as the primary fines, however, the adsorption capacity of the secondary fines decreased rapidly during the course of recycling and showed lower adsorption capacily than primary fines.

  • PDF

Evaluation of Estimation and Variability of Fines Content in Pohang for CPT-based Liquefaction Assessment (CPT 기반 액상화 평가를 위한 포항지역 세립분 함량 예측 및 변동성 평가)

  • Bong, Tae-Ho;Kim, Sung-Ryul;Yoo, Byeong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.3
    • /
    • pp.37-46
    • /
    • 2019
  • Recently, the use of CPT-based liquefaction assessment method has increased by providing more accurate results than other field tests. In CPT-based liquefaction evaluation, various soil properties are predicted and they are used for liquefaction potential assessment. In particular, fines content is one of the important input parameters in CPT-based liquefaction assessment, so it is very important to use correct prediction model and to make quantitative evaluation of estimating variability of fines content. In this study, the error evaluation of existing models for prediction of fines content through CPT was performed, and the most suitable model was selected for Pohang area, where the liquefaction phenomenon was observed in the 2017. In addition, the inherent variability of soil was analyzed, and the estimating variability of fines content was evaluated quantitatively considering the inherent variability of soil, measurement error of CPT and transformation uncertainty of selected model.

Effect of Ground Confine Pressure on Pullout Resistance of Piles Using Model Experiment (말뚝의 인발저항에 대한 지중 구속압 영향 분석을 위한 실내모형실험)

  • Seung-Kyong You;Gigwon Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • This paper describes the results of a pile pullout test considering the confine pressure and fines content of the ground. The Pullout tests were conducted under various ground conditions using model piles. The effect of ground confine pressure on the pullout resistance and the pullout resistance parameters of the pile were evaluated based on the experimental results. The results of pullout test showed that the maximum pullout resistance occurred at a pullout displacement of about 7mm to 9mm, regardless of the fines content and the confine pressure of the ground. The maximum pullout resistance of the pile decreased as the fines content of the ground increased, and this trend became clearer as the confine pressure increased. The pullout resistance calculated by theoretical formula was compared with the experimental results in order to ensure the reliability of the pullout test results. The comparative results showed that the experimental and theoretical values showed a tendency to decrease the pullout resistance as the fines content increased, in all confine pressure conditions. The analysis result of the pullout resistance parameters confirmed that the pullout resistance was greatly influenced by the adhesion compared to the interface friction angle, as the fines content of the ground around the pile increased.

A comprehensive laboratory compaction study: Geophysical assessment

  • Park, Junghee;Lee, Jong-Sub;Jang, Byeong-Su;Min, Dae-Hong;Yoon, Hyung-Koo
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.211-218
    • /
    • 2022
  • This study characterizes Proctor and geophysical properties in a broad range of grading and fines contents. The results show that soil index properties such as uniformity and fines plasticity control the optimum water content and peak dry unit trends, as well as elastic wave velocity. The capillary pressure at a degree of saturation less than S = 20% plays a critical role in determining the shear wave velocity for poorly graded sandy soils. The reduction in electrical resistivity with a higher water content becomes pronounced as the water phase is connected A parallel set of compaction and geophysical properties of sand-kaolinite mixtures reveal that the threshold boundaries computed from soil index properties adequately capture the transitions from sand-controlled to kaolinite-controlled behavior. In the transitional fines fraction zone between FF ≈ 20 and 40%, either sand or kaolinite or both sand and kaolinite could dominate the geophysical properties and all other properties associated with soil compaction behavior. Overall, the compaction and geophysical data gathered in this study can be used to gain a first-order approximation of the degree of compaction in the field and produce degree of compaction maps as a function of water content and fines fraction.

Characteristic evaluation of settlement and stiffness of cement-treated soils with the change of fines content under cyclic dynamic loading (세립분 함량 변화에 따른 반복 동하중을 받는 시멘트 혼합토의 침하 및 강성 특성평가)

  • Kim, Dae Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.23-29
    • /
    • 2020
  • The soil structures settle down continuously under cyclic dynamic loading after opening railway lines. This study examined the characteristics of the settlement and stiffness of cement-treated soils with the change in the content of fines under cyclic dynamic loading. Eighteen cases of the test were carried out with the changes in the fines content of soils, cement content, and curing days. Based on the test results, cement-treated soils containing more than 3% of cement could decrease settlement sufficiently even with a high portion of fines under cyclic dynamic loading. In addition, the elastic and plastic settlements could be reduced using 3 to 4% cement to the level of 1/4 and 1/6, respectively. In the viewpoint of stiffness, the resilient modulus of cement-treated soils increases with increasing cement content. Using more than 3% of cement, the 80MPa compaction stiffness standard for the upper subgrade of railways was satisfied, even with 40% of fines content of soils.

Evaluation of Cyclic Shear Strength Characteristics of Sands Containing Fines (모래-세립분 혼합토에 대한 반복전단강도특성 평가)

  • Kim, Uk-Gie;Kim, Dong-Wook;Lee, Joon-Yong;Kim, Ju-Hyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.31-40
    • /
    • 2012
  • In most design codes, soils are classified as either sandy or clayey soils, and appropriate design equations for each soil type are used to estimate their soil behaviour. However, sand-fine mixtures, which are typically referred to as intermediate soils, are somewhere at the middle of sandy or clayey soils, and therefore a unified interpretation of soil behaviour is necessary. In this paper, a series of cyclic shear tests were carried out for three different combinations of sand-fine mixtures with various fines content. Silica-sand mixture and fines (Iwakuni natural clay, Tottori silt, kaolinite) were mixed together with various mass ratios, while paying attention to the changes of void ratios expressed in terms of sand structure. The cyclic shear strengths of the mixtures below the threshold fines content were examined with the increasing fines contents. As a result, as the fines contents increased, their cyclic deviator stress ratios decreased for dense samples while it increased for loose samples. Additionally, cyclic deviator stress ratio of the mixtures was estimated using the concept of equivalent granular void ratio.