• Title/Summary/Keyword: Fine powder

Search Result 1,185, Processing Time 0.029 seconds

Synthesis of Ultrafine Calcium Carbonate powders by nozzle Spouting Method (분사법에 의한 초미립 경질 탄산 칼슘 분말의 합성)

  • Ahn, Ji-Whan;Park, Charn-Hoon;Kim, Jeong-Heo;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1276-1284
    • /
    • 1996
  • Ultrafine calcim carbonate powders with the size of 0.05~0.1 ${\mu}{\textrm}{m}$ and the calcite phase were prepared by the nozzle spouting method which was conducted by spouting calcium hydroxide slurry in reactor filled with CO2 gas. Well dispersed ultra-fine particles were synthesized in condition of high Ca(OH)2 concentration of the slurry ( 0.5wt%) synthesized calcium carbonate powder was shown the large particle size with agglo-meration.

  • PDF

The effects of nanofluid containing metal nano-powder on heat transfer (나노금속분말을 혼합한 용액이 열전달에 미치는 영향)

  • Kim, Hye-Min;Choi, Soon-Ho;Jeong, Jae-Hyun;Jeong, Jae-Hyun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.177-182
    • /
    • 2005
  • Many studies have been conducted to increase heat transfer in fluid. One of the various heat transfer enhancement techniques is to suspend fine metallic or nonmetallic solid powder in traditional fluid. Nanofluid is defined at a new kind of heat transfer fluid containing a very small quantity of nanometer particles that are uniformly and stably suspended in a liquid. In this study CuNi or CuAg nano particles are used to investigate heat transfer enhancement. The result shows the thermal conductivity of nanofluid is much higher than that of traditional fluid.

  • PDF

Measurement of High Temperature Dielectric Property at Microwave Frequency Using Cavity Perturbation Method (Cavity Perturbation Method를 이용한 마이크로파 주파수대의 고온 유전특성 측정 연구)

  • Kim, Dong-Eun;Jung, Jin-Ho;Lee, Sung-Min;Kim, Hyung-Tae
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.455-461
    • /
    • 2006
  • High temperature dielectric constants of the various ceramic materials have been measured using cavity perturbation method. The measurements were applied to refractory, traditional and fine ceramic powder compacts from room temperature to $1200^{\circ}C$. Calibration constant in the equation suggested by Hutcheon et al., was determined from the dielectric constants of reference specimen (teflon and alumina) at room temperature. From these results, informations on the refectory materials were obtained for the microwave kiln design and understanding of the microwave heating effects of ceramics have been improved.

Synthesis and disperse treatment of Cu powder from $Cu(OH)_2$ slurry by wet reduction methods (액상환원법에 의한 $Cu(OH)_2$ 슬러리로부터 미세구리분말 제조 및 분산화 처리)

  • Ahn Jong-Gwan;Hai Hoang Tri;Kim Dong-Jin;Kim Byeong-Gyu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2005.11a
    • /
    • pp.87-88
    • /
    • 2005
  • Ultra-fine copper powders with particle size about 150 nm were synthesized from copper hydroxide slurry by wet method using hydrazine as reduction agent and several sur factants at below $80^{\circ}C$. The particle size distribution and dispersion of synthesized powders as function of temperature, feeding rate of reduction and especially, sur factants were character ized by XRD, BET, PSA and SEM by this process.

  • PDF

진동형 분체 최소착화에너지측정장치의 특성

  • ;;Mizuki YAMAGUMA;Wei Lam CHEUNG;Tsutomu KODAMA
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.179-182
    • /
    • 1998
  • It is widely recognized that conventional means for determining the minimum ignition energy(MIE) of powder are time-consuming and require operational skill. As a variety of new fine powders are being produced day by day in industry, there is an urgent need to a quicker and more economical means to measure MIE. To meet this requirement, we have developed a measurement system which employs a novel method to create an air/dust mixture in a miniature combustion box. In this system, the powder to be tested input into a hopper made of metal mesh, and successively fed downward to form a thin, curtain-like dust/air mixture by vibration. With this new apparatus, three type of powders -Lycopodium, Anthraquinone, and Polyacrylonitrile-were tested and the MIE data were compared with those taken with a conventional apparatus(the Hartmann tube). Two of them agreed satisfactory, but the other, anthraquinone, showed quite different values supposedly due to the agglomeration of the powder particles by static-charge.

  • PDF

Influence of Replacement Ratio of Wasted Refractory Aggregate on the Properties of Mortar using Blast Furnace Slag and Recycled Aggregate (폐내화물 골재 치환율이 고로슬래그 미분말과 순환골재 사용 모르타르의 품질에 미치는 영향)

  • Song, Yuan-Lou;Moon, Byeong-Yong;Kim, Min-Sang;Lee, Jea-Hyeon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.139-140
    • /
    • 2016
  • In this research, the possibility of wasted refractory aggregate pulverized from refractory block as an expansive admixture and additional alkaline stimulant for class two and three blast furnace slag cements (BSC) was assessed with its high content of free CaO or free MgO. As the replacement ratios of wasted refractory powder and blast furnace slag were increased, flow and air content were decreased, while unit volume weight was increased under same conditions. Compressive strength of mortar was increased with increased replacement ratio of wasted refractory powder, especially, in the case of class three BSC, the highest compressive strength was obtained when wasted refractory aggregate was replaced 2%.

  • PDF

Preparationof High Purity, Submicron BaTiO3 Powder Prepared by Hydrothermal Reaction (수열반응에 의한 고순도 극미립자 BaTiO3 분말합성)

  • 김경용;김윤호;손용배
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.493-498
    • /
    • 1989
  • High purity, submicron BaTiO3 powder was prepared by a hydrothermal technique using Ba(OH)2.8H2O, TiCl4 and NH4OH as starting raw materials. The submicron BaTiO3 powder was synthesized at 130~23$0^{\circ}C$ for 2.5h to yield highly crystalline particles with a narrow particle distribution. The mole ratio of Ba(OH)2.8H2O/TiO(OH)2 was 1.5. It is possible to obtain BaTiO3 with Ba : Ti=1.00$\pm$0/01. The samples densified well at 13$25^{\circ}C$, showing a uniform and fine grain structure. The grain size ranged between 0.3 and 0.5${\mu}{\textrm}{m}$. The products obtained by hydrothermal treatment at various temperatures from 130 to 23$0^{\circ}C$ were characterized by XRD, DTA, BET and SEM etc.

  • PDF

Synthesis of Mullite Powder from Alkoxides and Its Properties (알콕사이드로부터 Mullite분말의 합성 및 그 특성)

  • 이홍림;함종근
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.763-770
    • /
    • 1989
  • A very fine and pure mullite powder of the stoichiometric composition was prepared from aluminium isopropoxide and tetraethylorthosilicate by an alkoxide hydrolysis method using NH4OH as a catalytic agent. The gel powder obtained from the hydrolysis was calcined at 80$0^{\circ}C$ and 125$0^{\circ}C$. The average particle sizes of the powders calcined at 80$0^{\circ}C$ and 125$0^{\circ}C$ were 0.19${\mu}{\textrm}{m}$ and 0.25${\mu}{\textrm}{m}$, respectively. The specific surface areas of the powders calcined at 80$0^{\circ}C$ and 125$0^{\circ}C$ were 114.7$m^2$/g and 20.6$m^2$/g, respectively. The bending strength and fracture toughness of the mullite ceramics sintered at 1$650^{\circ}C$ were 263.1MPa and 2.30MPa.m1/2 respectively.

  • PDF

Properties of Powders and Sintered Bodies of $\beta$-SiC Prepared from Jecheon Quartzite (제천규석으로부터 제조한 $\beta$-SiC분말 및 소결체의 특성)

  • 이홍림;신석호;배철훈;김무경
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.139-146
    • /
    • 1987
  • ${\beta}$-SiC powders were prepared by the simultaneous reduction and carbiding of Jecheon quartzite at 1400$^{\circ}C$ for 7 hours in hydrogen atmosphere, using graphite or carbon black as the reducing and carbiding reagent. The prepared SiC powder was acid-treated with the mixture of fluoric acid and hydrochloric acid at room temperature and also by heating on an alcohol lamp for one hour, respectively. The impurities were mostly eliminated and the purity of SiC became 98.5% after hot acid treatment. The specific surface area of SiC powder was also increased up to 115㎡/g by hot acid treatment. This pure and fine SiC powder was hot-pressed at 1900$^{\circ}C$ for 30min, using 5wt% Al2O3 as a sintering aid. The density, M.O.R., KIC and hardness of the hot-pressed SiC ceramics were 3.195g/㎤, 48.7Kgf/$\textrm{mm}^2$, 5.4MN/㎥/2 and 2,182Kgf/$\textrm{mm}^2$, respectively.

  • PDF

Effect of Grain Boundary Modification on the Microstructure and Magnetic Properties of HDDR-treated Nd-Fe-B Powders

  • Liu, Shu;Kang, Nam-Hyun;Yu, Ji-Hun;Kwon, Hae-Woong;Lee, Jung-Goo
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • The microstructure and magnetic properties of HDDR-treated powders after grain boundary diffusion process (GBDP) with Nd-Cu alloy at different temperatures have been studied. The variation of GBDP temperature had multifaceted influences on the HDDR-treated powders involving the microstructure, phase composition and magnetic performance. An enhanced coercivity of 16.9 kOe was obtained after GBDP at $700^{\circ}C$, due to the modified grain boundary with fine and continuous Nd-rich phase. However, GBDP at lower or higher temperature resulted in poor magnetic properties because of insufficient microstructural modification. Especially, the residual hydrogen induced phenomenon during GBDP strongly depended on the GBDP temperature.