• Title/Summary/Keyword: Fine pitch I/O(input/output)

Search Result 2, Processing Time 0.016 seconds

Organic-inorganic Hybrid Dielectric with UV Patterning and UV Curing for Global Interconnect Applications (글로벌 배선 적용을 위한 UV 패턴성과 UV 경화성을 가진 폴리실록산)

  • Song, Changmin;Park, Haesung;Seo, Hankyeol;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • As the performance and density of IC (integrated circuit) devices increase, power and signal integrities in the global interconnects of advanced packaging technologies are becoming more difficult. Thus, the global interconnect technologies should be designed to accommodate increased input/output (I/O) counts, improved power grid network integrity, reduced RC delay, and improved electrical crosstalk stability. This requirement resulted in the fine-pitch interconnects with a low-k dielectric in 3D packaging or wafer level packaging structure. This paper reviews an organic-inorganic hybrid material as a potential dielectric candidate for the global interconnects. An organic-inorganic hybrid material called polysiloxane can provide spin process without high temperature curing, an excellent dielectric constant, and good mechanical properties.

Technology Trends of Semiconductor Package for ESG (ESG를 위한 반도체 패키지 기술 트렌드)

  • Minsuk Suh
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.35-39
    • /
    • 2023
  • ESG (Environment, Social, Governance) has become a major guideline for many companies to improve corporate value and enable sustainable management. Among them, the environment requires a technological approach. This is because technological solutions are needed to reduce or prevent environmental pollution and save energy. Semiconductor package technology has been developed to better satisfy the essential roles of semiconductor packaging: chip protection, electrical/mechanical connection, and heat dissipation. Accordingly, technologies have been developed to improve heat dissipation effect, improve electrical/mechanical properties, improve chip protection reliability, stacking and miniaturization, and reduce costs. Among them, heat dissipation technology increases thermal efficiency and reduces energy consumption for cooling. Also, technology to improve electrical characteristics has had an impact on the environment by reducing energy consumption. Technologies that recycling or reducing material consumption reduce environmental pollution. And technologies that replace environmentally harmful substances contribute to environmental improvement, in particular. In this paper, I summarize trends in semiconductor package technologies to prevent pollution and improve environment.