• 제목/요약/키워드: Fine particulate matter

검색결과 280건 처리시간 0.024초

Human Pluripotent Stem Cell-Derived Alveolar Epithelial Cells as a Tool to Assess Cytotoxicity of Particulate Matter and Cigarette Smoke Extract

  • Jung-Hyun Kim;Minje Kang;Ji-Hye Jung;Seung-Joon Lee;Seok-Ho Hong
    • 한국발생생물학회지:발생과생식
    • /
    • 제26권4호
    • /
    • pp.155-163
    • /
    • 2022
  • Human pluripotent stem cells (hPSCs) can give rise to a vast array of differentiated derivatives, which have gained great attention in the field of in vitro toxicity evaluation. We have previously demonstrated that hPSC-derived alveolar epithelial cells (AECs) are phenotypically and functionally similar to primary AECs and could be more biologically relevant alternatives for assessing the potential toxic materials including in fine dust and cigarette smoking. Therefore, in this study, we employed hPSC-AECs to evaluate their responses to exposure of various concentrations of diesel particulate matter (dPM), cigarette smoke extract (CSE) and nicotine for 48 hrs in terms of cell death, inflammation, and oxidative stress. We found that all of these toxic materials significantly upregulated the transcription of pro-inflammatory cytokines such as IL-1α, IL-β, IL-6, and TNF-α. Furthermore, the exposure of dPM (100 ㎍/mL) strongly induced upregulation of genes related with cell death, inflammation, and oxidative stress compared with other concentrations of CSE and nicotine. These results suggest that hPSC-AECs could be a robust in vitro platform to evaluate pulmotoxicity of various air pollutants and harmful chemicals.

지하철 미세먼지에 의하여 유발되는 피부염증에 대한 달맞이꽃 뿌리 추출물의 완화 효과 (Relaxing Effect of Evening Primrose Root on Skin Irritation Caused by Particulate Matter in Subway Tunnel)

  • 신명걸;박을용;박덕신;김종태
    • 대한화장품학회지
    • /
    • 제46권2호
    • /
    • pp.119-131
    • /
    • 2020
  • 인간의 피부가 지하철 터널과 같은 외부환경에서 고농도의 입자 먼지(PM2.5, PM10)에 장시간 노출되면 피부에 나쁜 영향을 받게 된다. 특히, 미세입자 먼지는 피부를 손상시켜 염증과 알러지 반응을 일으킨다. 본 연구에서는 달맞이꽃뿌리 추출물이 피부에 미세입자 먼지가 반응하여 피부손상을 유발할 때 피부염증 저해능력을 조사하였다. 입자형태의 먼지는 지하철에서 하루에 가장 높은 농도로 존재할 때 수집하였다. 달맞이꽃뿌리 추출물은 대조군에 비하여 강한 항산화능을 보였다 (62.6%). 미세입자 형태와 달맞이꽃뿌리 추출물의 혼합물은 일산화질소 생성을 억제하여 달맞이꽃뿌리 추출물이 미세입자 먼지에 의하여 유발되는 피부염증을 완화하는 효과가 확인되었다. 달맞이꽃뿌리 추출물은 세포독성이 대조군에 비하여 낮았다. 입자형태의 먼지(PM10)를 세포에 노출시켰을 때 달맞이꽃뿌리 추출물의 농도를 증가시킬수록(5, 10, 20 ㎍/mL) 활성산소 수준이 감소함과 동시에 양성 대조군에 비하여 더욱 효과적이었다. 따라서 본 연구결과는 달맞이꽃뿌리 추출물이 미세입자 형태의 먼지에 의하여 유발되는 피부 손상을 완화시킬 수 있는 효능을 제공하여 피부용 화장품 소재로 활용이 가능함을 입증하였다.

W-Station을 활용한 고밀도 초미세먼지 모니터링 연구: 제주도 사례 (A study on the monitoring of high-density fine particulate matters using W-station: Case of Jeju island)

  • 이종원;박문수;원완식;손석우
    • 한국입자에어로졸학회지
    • /
    • 제16권2호
    • /
    • pp.31-47
    • /
    • 2020
  • Although interest in air quality has increased due to the frequent occurrence of high-concentration fine particulate matter recently, the official fine particulate matter measuring network has failed to provide spatial detailed air quality information. This is because current measurement equipment has a high cost of installation and maintenance, which limits the composition of the measuring network at high resolution. To compensate for the limitations of the current official measuring network, this study constructed a spatial high density measuring network using the fine particulate matter simple measuring device developed by Observer, W-Station. W-Station installed 48 units on Jeju Island and measured PM2.5 for six months. The data collected in W-Station were corrected by applying the first regression equation for each section, and these measurements were compared and analyzed based on the official measurements installed in Jeju Island. As a result, the time series of PM2.5 concentrations measured in W-Station showed concentration characteristics similar to those of the environmental pollution measuring network. In particular, the results of comparing the measurements of W-Station within a 2 km radius of the reference station and the reference station showed that the coefficient of determination (R2) was 0.79, 0.81, 0.67, respectively. In addition, for W-Station within a 1 km radius, the coefficient of determination was 0.85, 0.82, 0.68, respectively, showing slightly higher correlation. In addition, the local concentration deviation of some regions could be confirmed through 48 high density measuring networks. These results show that if a network of measurements is constructed with adequate spatial distribution using a number of simple meters with a certain degree of proven performance, the measurements are effective in monitoring local air quality and can be fully utilized to supplement or replace formal measurements.

배경지역 대기경계층 미세먼지의 화학조성 특성: 2012년 가을 측정 (Chemical Composition Characteristics of Fine Particulate Matter at Atmospheric Boundary Layer of Background Area in Fall, 2012)

  • 고희정;이윤상;김원형;송정민;강창희
    • 대한화학회지
    • /
    • 제58권3호
    • /
    • pp.267-276
    • /
    • 2014
  • 국내 배경지역인 제주도 한라산 1100 고지에서 2012년 가을철에 $PM_{10}$, $PM_{2.5}$ 미세먼지를 채취하여 이온 및 원소 성분을 분석한 결과로부터 대기경계층(ABL) 미세먼지의 화학조성과 입자크기별 분포 특성을 조사하였다. $PM_{2.5}$ 미세입자($d_p$ < $2.5{\mu}m$)에서는 2차 오염물질인 nss-$SO{_4}^{2-}$, $NH_4{^+}$, $NO_3{^-}$ 농도가 각각 4.84, 1.98, $1.27{\mu}g/m^3$로 상대적으로 높고, 전체 질량의 58.2%를 차지하였다. 반면에 $PM_{10-2.5}$ 조대입자($2.5{\mu}m$ < $d_p$ < $10{\mu}m$)에서는 이들 세 성분의 농도가 각각 0.63, 0.21, $1.10{\mu}g/m^3$로 전체 질량의 22.8%를 차지하였다. 또 수용성 이온성분들 중 $NH_4{^+}$, nss-$SO{_4}^{2-}$, $K^+$, $CH_3COO^-$은 주로 미세입자에 분포하고, $NO_3{^-}$은 미세입자와 조대입자에 고르게 분포하나, $Na^+$, $Cl^-$, $Mg^{2+}$, nss-$Ca^{2+}$은 조대입자에 더 많이 분포하는 특징을 나타내었다.

중성자 방사화분석법과 Gent SFU 샘플러를 이용한 도시의 농촌지역의 대기분지($PM_{10}$)관측 연구 (Study on Airborne Particulate Matter ($PM_{10}$) Monitoring in Urban and Rural Area by Using Gent SFU Sampler and Instrumental Neutron Activation Analysis)

  • 정용삼;문종화;김선하;박광원;강상훈
    • 한국대기환경학회지
    • /
    • 제16권5호
    • /
    • pp.453-467
    • /
    • 2000
  • The aim of this research is to collect and characterize fine particles (FPM:$\leq$2.5${\mu}{\textrm}{m}$) and coarse particles (CPM: 2.5~10${\mu}{\textrm}{m}$) using a low volume air sampler provided by the IAEA, at urban (Taejon) and rural area(Wonju) for a period of about two years(April 1996 to May 1998) and to promote a use of nuclear analytical techniques for air pollution studies. For the collection of airborne particulate matter (PM(sub)10), the Gent stacked filter unit sampler and polycarbonate membrane filters were employed. The concentration of trace elements in collected APM samples were determined byu instrumental Neutron Activation Analysis. For validation of the analytical data, internal quality control were implemented by using both the comparison of the analytical results of standard reference materials(NIST SRM 1648) and interlaboratory comparison for proficiency test (NAT-3). The standard uncertainty was less than 15% and Z-score of two samples were within $\pm$1. The monitoring of (PM(sub)10) mass concentration and elemental concentrations were carried out weekly. The average mass concentration of (PM(sub)10) in urban and rural areas were 59.2$\pm$36.5$\mu\textrm{g}$/㎥ and 41.4$\pm$23.7$\mu\textrm{g}$/㎥, respectively. To investigate the emission source, the enrichment factors were calculated for the fine and coarse particle fractions at two sites, respectively and these values were classified for anthropogenic and soil origin elements.

  • PDF

외기 중 미세먼지의 공동주택 실내 유입에 관한 연구 (Analysis of Infiltration of Outdoor Particulate Matter into Apartment Buildings)

  • 방종일;조성민;성민기
    • 대한건축학회논문집:구조계
    • /
    • 제34권1호
    • /
    • pp.61-68
    • /
    • 2018
  • Recently, concentration of fine and ultra-fine particulate matter(PM) has been increased in KOREA. The increase of PM in KOREA is due to increase of domestic industries and yellow dust from china. PM is known to cause diseases such as dyspnoea, asthma, arrhythmia. Since PM is harmful to human, KOREA Ministry of Environment(ME) warns people to stay indoors when the outdoor PM concentration is high. However, prior studies has shown that indoor PM concentration can be relatively high when outdoor PM concentration is high due to infiltration of PM into buildings though leakage areas. In this study, airtightness, indoor and outdoor pressure difference and PM 2.5 & 10 concentration were measured in an apartment complex to observe PM infiltrating into building. Field measurement was conducted in newly-built apartment buildings to avoid the influence of indoor PM which can be generated by residents. The airtightness test was conducted to identify the leakage areas of the apartment, such as electric outlets and supply/exhaust diffusers. The airtightness test result showed that the air leakage area of the building was dominant in buildings envelop. According to indoor and outdoor pressure difference measurement result and PM concentration measurement result, it can be concluded that outdoor PM can infiltrate into indoor by leakage areas when wind is blown toward the apartment. As a result, pressure difference formed by the external weather condition and architectural characteristics such as the airtightness in building can influence PM to infiltrate into buildings. In further studies, I/O ratio, stack-effect, infiltration and penetration factor will be considered.

大氣浮游粒子狀物質中 Benzo(a) pyrene 濃度에 關한 硏究 (Studies on Benzo(a) pyrene Concentrations in Atmospheric Particulate Matters)

  • 손동헌;허문영;남궁용
    • 한국대기환경학회지
    • /
    • 제3권2호
    • /
    • pp.11-17
    • /
    • 1987
  • Atmospheric particulate matter (A.P.M.) was collected on quartz fiber filters from March 1985 to February 1986 at Chung-Ang University according to particle size using Andersen high-volume air smapler, and benzo (a) pyrene concentration in these particulates were analyzed by high performance liquid chromatography. The annual arithmetic mean concentration of A.P.M. was 115.50$\mug/m^3$. The annual arithmetic mean concentrations of coarse particles and fine particles in A.P.M. were 52.54$\mum/m^3$ and 62.96$\mum/m^3$ respectively. THe annual arithmetic mean concentration of benzo(a)pyrene in A.P.M. was 1.44$ng/m^3$. THe annual arithmetic mean concentrations of benzo(a)pyrene in coarse particles and fine particles were 0.05 $ng/m^3$ and 1.39 $ng/m^3$ respectively. Thus, the concentration of benzo(a)pyrene showed maldistribution of 96.53% in fine particle. A.P.M. showed wide fluctuation according to the season. The concentration of A.P.M. was lowest in summer and high in spring and winter. Coarse and fine particle concentrations in A.P.M. were highest in spring and winter, respectively. The concentrations of benzo(a)pyrene was highest in winter and lowest in summer. The concentrations of benzo(a)pyrene in fine and coarse particles were highest in winter and spring, respectively.

  • PDF

PM10/2.5/1/0 Trichotomous 도입부 설계 밀 성능평가 (Design and performance of Low-Volume PM10/2.5/1.0 Trichotomous Sampler Inlet)

  • Song Chang-Byeong;Kim Hyeon-Tae;Lee Gyu-Won
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2002년도 추계학술대회 논문집
    • /
    • pp.358-359
    • /
    • 2002
  • Particulate matter smaller than $10{\mu}textrm{m}$ in aerodynamic diameter (PM10) is known as thoracic particles that are capable of reaching the thoracic region of humans. PM10 is further divided into two size ranges, which are fine particles (nuclei mode plus accumulation mode) and coarse particles, based on different sources and chemical composition. Fine particles can penetrate deep into the alveolar region of the human lungs, while coarse particles be deposited in the upper respiratory system. (omitted)

  • PDF