• Title/Summary/Keyword: Fine particulate

Search Result 442, Processing Time 0.026 seconds

Sources of Carbonaceous Materials in the Airborne Particulate Matter of Dhaka

  • Begum, Bilkis A.;Hossain, Anwar;Saroar, Golam;Biswas, Swapan K.;Nasiruddin, Md.;Nahar, Nurun;Chowdury, Zohir;Hopke, Philip K.
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.4
    • /
    • pp.237-246
    • /
    • 2011
  • To explore the sources of carbonaceous material in the airborne particulate matter (PM), comprehensive PM sampling was performed (3 to 14 January 2010) at a traffic hot spot site (HS), Farm Gate, Dhaka using several samplers: AirMetrics MiniVol (for $PM_{10}$ and $PM_{2.5}$) and MOUDI (for size fractionated submicron PM). Long-term PM data (April 2000 to March 2006 and April 2000 to March 2010 in two size fractions ($PM_{2.2}$ and $PM_{2.2-10}$) obtained from two air quality-monitoring stations, one at Farm Gate (HS) and another at a semi-residential (SR) area (Atomic Energy Centre, Dhaka Campus, (AECD)), respectively were also analyzed. The long-term PM trend shows that fine particulate matter concentrations have decreased over time as a result of government policy interventions even with increasing vehicles on the road. The ratio of $PM_{2.5}/PM_{10}$ showed that the average $PM_{2.5}$ mass was about 78% of the $PM_{10}$ mass. It was also found that about 63% of $PM_{2.5}$ mass is $PM_1$. The total contribution of BC to $PM_{2.5}$ is about 16% and showed a decreasing trend over the years. It was observed that $PM_1$ fractions contained the major amount of carbonaceous materials, which mainly originated from high temperature combustion process in the $PM_{2.5}$. From the IMPROVE TOR protocol carbon fraction analysis, it was observed that emissions from gasoline vehicles contributed to $PM_1$ given the high abundance of EC1 and OC2 and the contribution of diesel to $PM_1$ is minimal as indicated by the low abundance of OC1 and EC2. Source apportionment results also show that vehicular exhaust is the largest contributors to PM in Dhaka. There is also transported $PM_{2.2}$from regional sources. With the increasing economic activities and recent GDP growth, the number of vehicles and brick kilns has significantly increased in and around Dhaka. Further action will be required to further reduce PM-related air pollution in Dhaka.

Reliability and Accuracy of the Deployable Particulate Impact Sampler for Application to Spatial PM2.5 Sampling in Seoul, Korea (서울시 PM2.5 공간 샘플링을 위한 Deployable Particulate Impact Sampler의 성능 검증 연구)

  • Oh, Gyu-Lim;Heo, Jong-Bae;Yi, Seung-Muk;Kim, Sun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.3
    • /
    • pp.277-288
    • /
    • 2017
  • Previous studies of health effects of $PM_{2.5}$ performed spatial monitoring campaigns to assess spatial variability of $PM_{2.5}$ across people's residences. Highly reliable portable and cost-effective samplers will be useful for such campaigns. This study aimed to investigate applicability of the Deployable Particulate Impact Sampler(DPIS), one of the compact impact samplers, to spatial monitoring campaigns of $PM_{2.5}$ in Seoul, Korea. The investigation focused on the consistency of $PM_{2.5}$ concentrations measured by DPISs compared to those by the Low-volume Cyclone sampler (LCS). LCS has operated at a fixed site in the Seoul National University Yeongeon campus, Seoul, Korea since 2003 and provided qualified $PM_{2.5}$ data. $PM_{2.5}$ sampling of DPISs was carried out at the same site from November 17, 2015 through February 3, 2016. $PM_{2.5}$ concentrations were quantified by the gravimetric method. Using a duplicated DPIS, we confirmed the reliability of DPIS by computing relative precision and mean square error-based R squared value ($R^2$). Relative precision was one minus the difference of measurements between two samplers relative to the sum. For accuracy, we compared $PM_{2.5}$ concentrations from four DPISs (DPIS_Tg, DPIS_To, DPIS_Qg, and DPIS_Qo) to those of LCS. Four samplers included two types of collection filters(Teflon, T; quartz, Q) and impaction discs(glass fiber filter, g; pre-oiled porous plastic disc, o). We assessed accuracy using accuracy value which is one minus the difference between DPIS and LCS $PM_{2.5}$ relative to LCS $PM_{2.5}$ in addition to $R^2$. DPIS showed high reliability (average precision=97.28%, $R^2=0.98$). Accuracy was generally high for all DPISs (average accuracy=83.78~88.88%, $R^2=0.89{\sim}0.93$) except for DPIS_Qg (77.35~78.35%, 0.82~0.84). Our results of high accuracy of DPIS compared to LCS suggested that DPIS will help the assessment of people's individual exposure to $PM_{2.5}$ in extensive spatial monitoring campaigns.

An Investigation on the Perception of the Effects of Particulate Matter on Oral Health (미세먼지가 구강건강에 미치는 영향에 관한 인식도 조사)

  • Kim, Jue-young;Son, Hwa-kyung
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.620-628
    • /
    • 2021
  • This study was conducted to investigate public's perception of the effects of particulate matter (PM) in oral health and to provide specific motivation to prevent oral disease by PM. A total of 134 adults were selected as final analysis subjects from some people all over the country. The data collected is analyzed using SPSS 21.0 for windows. Frequency analysis was used to identify general characteristics and hygiene habit. For identifying perception of effects of PM on oral health, crossover analysis was used. The largest number of people recognized that the level of PM had deteriorated, compared to five years ago. That perception was highest among those in 30 years of age and service professions. Those who check the concentration of PM are more concerned with oral health care when the PM is occurred in high concentration. People who perceive PM as a threat to the oral health are more concerned about oral health care when the PM is occurred in high concentration. It is concerned those who are aware of the relationship between PM and oral health specifically manage the oral health to protect the oral cavity from PM.

Physical, Chemical and Optical Properties of Fine Aerosol as a Function of Relative Humidity at Gosan, Korea during ABC-EAREX 2005

  • Moon, Kwang-Joo;Han, Jin-Seok;Cho, Seog-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.129-138
    • /
    • 2013
  • The water uptake by fine aerosol in the atmosphere has been investigated at Gosan, Korea during ABC-EAREX 2005. The concentration of inorganic ion and carbon components, size distribution, and light scattering coefficients in normal and dry conditions were simultaneously measured for $PM_{2.5}$ by using a parallel integrated monitoring system. The result of this study shows that ambient fine particles collected at Gosan were dominated by water-soluble ionic species (35%) and carbonaceous materials (18%). In addition, it shows the large growth of aerosol in the droplet mode when RH is higher than 70%. Size distribution of the particulate surface area in a wider size range ($0.07-17{\mu}m$) shows that the elevation of RH make ambient aerosol grow to be the droplet mode one around $0.6{\mu}m$ or the coarse mode one, larger than $2.5{\mu}m$. Hygroscopic factor data calculated from the ratio of aerosol scattering coefficients at a given ambient RH and a reference RH (25%) show that water uptake began at the intermediate RH range, from 40% to 60%, with the average hygroscopic factor of 1.10 for 40% RH, 1.11 for 50% RH, and 1.17 for 60% RH, respectively. Finally, average chemical composition and the corresponding growth curves were analyzed in order to investigate the relationship between carbonaceous material fraction and hygroscopicity. As a result, the aerosol growth curve shows that inorganic salts such as sulphate and nitrate as well as carbonaceous materials including OC largely contribute to the aerosol water uptake.

Characteristics of Nitrate (NO3-) Volatilization from Fine Particles (PM2.5) at 4 Measurement Sites in Seoul (미세입자(PM2.5)의 질산염 (NO3-) 휘발 특성 분석 -서울시 4개 측정지역을 중심으로-)

  • Kim, Yoo-Jung;Jung, Sung-Woon;Kang, Choong-Min;Ma, Young-Il;Kim, Su-Hyang;Woo, Jung-Hun;SunWoo, Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.613-621
    • /
    • 2008
  • The purpose of this study is to understand the impact that temperature and relative humidity have on the volatilization loss of particulate nitrate $(NO_3^-)$ from Teflon filters during measurements of ambient fine particles $(PM_{2.5})$. Fine particles $(d_p<2.5{\mu}m)$ were measured using an annular denuder system (ADS) at four representive areas in Seoul. The measurements were made during 28 different days at 24-hr sampling intervals from February 14 to October 15, 1997. In this study, nitrate losses. calculated by the ratio of nitrate on the nylon filter to their sum in both Teflon and nylon titters, varied seasonally in the following order: summer (45.5%) > spring (23.8%) > fall (20.6%) > winter (19.7%). The results showed strong correlations with temperature, but we did not observe any significant effects of relative humidity. However, we observed that both temperature and relative humidity influenced the ambient gas/particle nitrate ratio in a different case study using a denuder.

Sampling and Analysis of Acidic Air Pollutants Using an Annular Denuder System during the Summer Season in Chongju City (디누더 측정기를 이용한 여름철 청주시의 산성오염물질 측정과 분석)

  • 이학성;강병욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.441-448
    • /
    • 1996
  • The cyclone/annular denuder system/filter pack sampling system (ADS) was used to collect the acidic air pollutants in Chongju city. The data set was collected on nine different days with 24 hour sampling period from July 27 through August 27, 1995. The chemical species measured were $HNO_3, HNO_2, SO_2 and NH_3$ in the gas phase, and $PM_{2.5}(d_P<2.5 \mum), SO_4^{2-}, NO_3^- and NH_4^+$ in the particulate phase. Mean concentrations measured from this study were: $0.90 \mug/m^3 for HNO_3, 1.27 \mug/m^3 for HNO_2, 10.9 \mug/m^3 for SO_2, 4.82 \mug/m^3 for NH_3, 27.5 \mug/m^3 for PM_{2.5}, 5.24 \mug/m^3 for SO_4^{2-}, 1.22 \mug/m^3 for NO_3^-, and 1.64 \mug/m^3 for NH_4^+$. The fine particle $(PM_{2.5})$ mass measured for the ADS samples was slightly higher than the fine particle mass measured for the corresponding dichotomous sampler. For the wind coming from Chongju industrial complex the concentrations of acidic air pollutants measured were higher when compared with other directions. Specially, $SO_2 and PM_{2.5}$ concentrations for the wind coming from Chongju industrial complex were 3.6 and about 2 times, respectively, higher than those of other wind directions. High correlations were observed between $PM_{2.5} and fine particle's ion components $(r=0.82 with SO_4^{2-}, r=0.76 with NO_3^- and r=0.89 with NH_4^+). NH_4^+ and SO_4^{2-}$ was also highly correlated (r=0.97).

  • PDF

Investigation of the Concentration of PM2.1 & PM10 and Alveolar Deposition Ratio (미세먼지(PM10)와 초미세먼지(PM2.1)의 농도와 폐포 침착율 조사)

  • Kim, Seong Cheon
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.2
    • /
    • pp.126-133
    • /
    • 2019
  • Objectives: In this study, a nine-stage cascade impactor was used to collect dust, and the concentration of $PM_{2.1}$ & $PM_{10}$ and alveolar deposition ratio were investigated. Methods: This study was conducted at Kunsan National University from May to June 2016. A nine-stage Cascade Impactor was used to analyze the concentrations of fine and ultrafine dust and to estimate the alveolar deposition rate by particle size of atmospheric dust particles. The pore size of each stage of the collector used in this study gradually increased from F to 0, with the F-stage as the last stage. Results: The mass fraction of PM showed a bimodal distribution divided into $PM_{2.1}$ & $PM_{10}$ based on $2.1-3.1{\mu}m$. The average mass fraction of particulate matter in the range of $2.1-3.1{\mu}m$ was 44%, and the area occupied by $PM_{2.1}$ was similar. Therefore, the Gunsan area is considered to be a region where there are similar effects from anthropogenic and natural sources. Conclusion: Dust collecting efficiency increased with the stage of collecting fine dust, and the efficiency of collection was very low at the stage of collecting ultra-fine dust. The seasonal overall efficiency of the Cascade Impactor was 44% in spring and 37.4% in summer, and the average overall efficiency was 40.7%. The alveolar deposition rate of $PM_{2.1}/PM_{10}$ during the sampling period was estimated to be about 75% deposited in the alveoli.

Effect of the Nishinoshima Volcanic Eruption on Fine Particulate Concentration in Busan in Early August 2020 (일본 니시노시마 화산 분출이 2020년 8월 초 부산지역의 미세먼지 농도에 미치는 영향)

  • Byung-Il Jeon
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.1079-1087
    • /
    • 2022
  • This study investigated the effect of volcanic materials that erupted from the Nishinoshima volcano, Japan, 1,300 km southeast of the Busan area at the end of July 2020, on the fine particle concentration in the Busan area. Backward trajectory analysis from the HYSPLIT model showed that the air parcel from the Nishinoshima volcano turned clockwise along the edge of the North Pacific high pressure and reached the Busan area. From August 4 to August 5, 2020, the concentration of PM10 and PM2.5 in Busan started to increase rapidly from 1000 LST on August 4, and showed a high concentration for approximately 13 hours until 2400 LST. The PM2.5/PM10 ratio showed a relatively high value of 0.7 or more, and the SO2 concentration also showed a high value at the time when the PM10 and PM2.5 concentrations were relatively high. The SO42- concentration in PM2.5 in Busan showed a similar trend to the change in PM10 and PM2.5 concentrations. It rose sharply from 1300 LST on August 4, at the time where it was expected to have been affected by the Nishinoshima Volcano. This study has shown that the occurrence of high concentration fine particle in Busan in summer has the potential to affect Korea not only due to anthropogenic factors but also from natural causes such as volcanic eruptions in Japan.

Introducing SPARTAN Instrument System for PM Analysis (PM 관측을 위한 스파르탄 시스템)

  • Sujin Eom;Sang Seo Park;Jhoon Kim;Seoyoung Lee;Yeseul Cho;Seungjae Lee;Ehsan Parsa Javid
    • Atmosphere
    • /
    • v.33 no.3
    • /
    • pp.319-330
    • /
    • 2023
  • As the need for PM type observation increases, Surface Particulate Matter Network (SPARTAN), PM samplers analyzes aerosol samples for PM mass concentration and chemical composition, were recently installed at two sites: Yonsei University at Seoul and Ulsan Institute of Science and Technology (UNIST) at Ulsan. These SPARTAN filter samplers and nephelometers provide the PM2.5 mass concentration and chemical speciation data with aerosol type information. We introduced the overall information and installation of SPARTAN at the field site in this study. After installation and observation, both Seoul and Ulsan sites showed a similar time series pattern with the daily PM2.5 mass concentration of SPARTAN and the data of Airkorea. In particular, in the case of high concentrations of fine particles, daily average value of PM2.5 was relatively well-matched. During the Yonsei University observation period, high concentrations were displayed in the order of sulfate, black carbon (BC), ammonium, and calcium ions on most measurement days. The case in which the concentration of nitrate ions showed significant value was confirmed as the period during which the fine dust alert was issued. From the data analysis, SPARTAN data can be analyzed in conjunction with the existing urban monitoring network, and it is expected to have a synergetic effect in the research field. Additionally, the possibility of being analyzed with optical data such as AERONET is presented. In addition, the method of installing and operating SPARTAN has been described in detail, which is expected to help set the stage for the observation system in the future.

Anti-aging effect of Codium fragile extract on keratinocytes damaged by fine dust PM10 (미세먼지 PM10으로 손상을 유도한 각질형성세포에서 청각 (Codium fragile) 추출물의 항노화 효과)

  • Bo Ae Kim
    • The Korea Journal of Herbology
    • /
    • v.38 no.4
    • /
    • pp.45-52
    • /
    • 2023
  • Objectives : Fine dust caused by environmental pollution cause oxidative damage and skin aging. In this study, The possibility of using the Codium fragile extract (CFE) as an anti-aging product for skin improvement was evaluated by confirming the protective effect of skin cells from PM10 (particulate matter 10) through inhibition of ROS and MMPs. Methods : In this study, elastase and collagenase inhibitory activities were evaluated. Cell viability was evaluated by treating keratinocytes (HaCaT cell line) with CFE at various concentrations. The cytoprotective effect from PM10 in keratinocyteswas evaluated using the 3-[4,5-dimethylthiazol]-2-yl]-2,5-diphenyl-tetrazoliumbromide (MTT) assay. ROS (reactive oxygen species) was measured in keratinocytes damaged by PM10 using DCF-DA (2′,7′-dichlorofluorescin diacetate) fluorescence staining. As an anti-aging effect of CFE, MMP-1 (matrix metalloproteinase-1) and MMP-1 (matrix metalloproteinase-9) inhibitory activities were evaluated. Results : As a result, CFE decreased the activity of elastase and collagenase. As a result of evaluating the toxicity of CFE, it is non-toxic at a concentration of 10 to 80 ㎍/㎖. Although cell viability of HaCaT cells treated with PM10 decreased, cell viability increased by 38% when treated with CFE 80 ㎍/㎖. Also, ROS decreased by 8.4%, and MMP-1 and MMP-9 decreased at CFE 80 ㎍/㎖. Conclusions : CFE showed excellent cell protection effect, and it is considered that it can be used in anti-aging products for skin improvement by effectively inhibiting ROS and MMPs from keratinocyte damage caused by fine dust.