DOI QR코드

DOI QR Code

Reliability and Accuracy of the Deployable Particulate Impact Sampler for Application to Spatial PM2.5 Sampling in Seoul, Korea

서울시 PM2.5 공간 샘플링을 위한 Deployable Particulate Impact Sampler의 성능 검증 연구

  • Oh, Gyu-Lim (Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University) ;
  • Heo, Jong-Bae (Institute of Health and Environment, Seoul National University) ;
  • Yi, Seung-Muk (Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University) ;
  • Kim, Sun-Young (Institute of Health and Environment, Seoul National University)
  • 오규림 (서울대학교 보건대학원 환경보건학과) ;
  • 허종배 (서울대학교 보건환경연구소) ;
  • 이승묵 (서울대학교 보건대학원 환경보건학과) ;
  • 김선영 (서울대학교 보건환경연구소)
  • Received : 2017.02.17
  • Accepted : 2017.06.06
  • Published : 2017.06.30

Abstract

Previous studies of health effects of $PM_{2.5}$ performed spatial monitoring campaigns to assess spatial variability of $PM_{2.5}$ across people's residences. Highly reliable portable and cost-effective samplers will be useful for such campaigns. This study aimed to investigate applicability of the Deployable Particulate Impact Sampler(DPIS), one of the compact impact samplers, to spatial monitoring campaigns of $PM_{2.5}$ in Seoul, Korea. The investigation focused on the consistency of $PM_{2.5}$ concentrations measured by DPISs compared to those by the Low-volume Cyclone sampler (LCS). LCS has operated at a fixed site in the Seoul National University Yeongeon campus, Seoul, Korea since 2003 and provided qualified $PM_{2.5}$ data. $PM_{2.5}$ sampling of DPISs was carried out at the same site from November 17, 2015 through February 3, 2016. $PM_{2.5}$ concentrations were quantified by the gravimetric method. Using a duplicated DPIS, we confirmed the reliability of DPIS by computing relative precision and mean square error-based R squared value ($R^2$). Relative precision was one minus the difference of measurements between two samplers relative to the sum. For accuracy, we compared $PM_{2.5}$ concentrations from four DPISs (DPIS_Tg, DPIS_To, DPIS_Qg, and DPIS_Qo) to those of LCS. Four samplers included two types of collection filters(Teflon, T; quartz, Q) and impaction discs(glass fiber filter, g; pre-oiled porous plastic disc, o). We assessed accuracy using accuracy value which is one minus the difference between DPIS and LCS $PM_{2.5}$ relative to LCS $PM_{2.5}$ in addition to $R^2$. DPIS showed high reliability (average precision=97.28%, $R^2=0.98$). Accuracy was generally high for all DPISs (average accuracy=83.78~88.88%, $R^2=0.89{\sim}0.93$) except for DPIS_Qg (77.35~78.35%, 0.82~0.84). Our results of high accuracy of DPIS compared to LCS suggested that DPIS will help the assessment of people's individual exposure to $PM_{2.5}$ in extensive spatial monitoring campaigns.

Keywords

References

  1. Atkinson, R.W., S. Kang, H.R. Anderson, I.C. Mills, and H.A. Walton (2014) Epidemiological time series studies of $PM_{2.5}$ and daily mortality and hospital admissions: a systematic review and meta-analysis, Thorax, doi:10.1136/thoraxjnl-2013-204492.
  2. Atkinson, R.W., I.C. Mills, H.A. Walton, and H.R. Anderson (2015) Fine particle components and health-a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions, Journal of Exposure Science and Environmental Epidemiology, 25(2), 208-214. https://doi.org/10.1038/jes.2014.63
  3. Babich, P., M. Davey, G. Allen, and P. Koutrakis (2000) Method comparisons for particulate nitrate, elemental carbon, and $PM_{2.5}$ mass in seven US cities, Journal of the Air and Waste Management Association, 50(7), 1095-1105. https://doi.org/10.1080/10473289.2000.10464152
  4. Baldauf, R.W., D.D. Lane, G.A. Marotz, and R.W. Wiener (2001) Performance evaluation of the portable Mini-VOL particulate matter sampler, Atmospheric Environment, 35(35), 6087-6091. https://doi.org/10.1016/S1352-2310(01)00403-4
  5. Beelen, R., O. Raaschou-Nielsen, M. Stafoggia, Z.J. Andersen, G. Weinmayr, B. Hoffmann, K. Wolf, E. Samoli, P. Fischer, M. Nieuwenhuijsen, P. Vineis, W.W. Xun, K. Katsouyanni, K. Dimakopoulou, A. Oudin, B. Forsberg, L. Modig, A.S. Havulinna, T. Lanki, A. Turunen, B. Oftedal, W. Nystad, P. Nafstad, U. De Faire, N.L. Pedersen, C.G. Ostenson, L. Fratiglioni, J. Penell, M. Korek, G. Pershagen, K.T. Eriksen, K. Overvad, T. Ellermann, M. Eeftens, P.H. Peeters, K. Meliefste, M. Wang, B. Bueno-de-Mesquita, D. Sugiri, U. Kramer, J. Heinrich, K. de Hoogh, T. Key, A. Peters, R. Hampel, H. Concin, G. Nagel, A. Ineichen, E. Schaffner, N. Probst-Hensch, N. Kunzli, C. Schindler, T. Schikowski, M. Adam, H. Phuleria, A. Vilier, F. Clavel-Chapelon, C. Declercq, S. Grioni, V. Krogh, M.Y. Tsai, F. Ricceri, C. Sacerdote, C. Galassi, E. Migliore, A. Ranzi, G. Cesaroni, C. Badaloni, F. Forastiere, I. Tamayo, P. Amiano, M. Dorronsoro, M. Katsoulis, A. Trichopoulou, B. Brunekreef, and G. Hoek (2014) Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project, Lancet, 383(9919), 785-795. https://doi.org/10.1016/S0140-6736(13)62158-3
  6. Bell, M.L., F. Dominici, K. Ebisu, S.L. Zeger, and J.M. Samet (2007) Spatial and temporal variation in $PM_{2.5}$ chemical composition in the United States for health effects studies, Environmental Health Perspectives, 989-995.
  7. Brown, A.S., R.E. Yardley, P.G. Quincey, and D.M. Butterfield (2006) Studies of the effect of humidity and other factors on some different filter materials used for gravimetric measurements of ambient particulate matter, Atmospheric Environment, 40(25), 4670-4678. https://doi.org/10.1016/j.atmosenv.2006.04.028
  8. Case, M.W., R. Williams, K. Yeatts, F.L. Chen, J. Scott, E. Svendsen, and R.B. Devlin (2008) Evaluation of a direct personal coarse particulate matter monitor, Atmospheric Environment, 42(19), 4446-4452. https://doi.org/10.1016/j.atmosenv.2008.02.023
  9. Chartier, K.L. and M.A. Weitz (1998). A comparison of filter types in the collection and gravimetric determination of airborne particulate matter less than 2.5 microns ($PM_{2.5}$). Journal of the Air and Waste Management Association, 48(12), 1199-1203. https://doi.org/10.1080/10473289.1998.10463755
  10. Chen, F.L., R. Vanderpool, R. Williams, F. Dimmick, B.D. Grover, R. Long, and R. Murdoch (2011) Field evaluation of portable and central site PM samplers emphasizing additive and differential mass concentration estimates, Atmospheric Environment, 45(26), 4522-4527. https://doi.org/10.1016/j.atmosenv.2011.02.006
  11. Cohen, M.A., S.D. Adar, R.W. Allen, E. Avol, C.L. Curl, T. Gould, D. Hardie, A. Ho, P. Kinney, T.V. Larson, P. Sampson, L. Sheppard, K.D. Stukovsky, S.S. Swan, L.-J.S. Liu, and J.D. Kaufman (2009) Approach to estimating participant pollutant exposures in the Multi-Ethnic Study of Atherosclerosis and air pollution (MESA air), Environmental Science and Technology, 43(13), 4687-4693. https://doi.org/10.1021/es8030837
  12. Eeftens, M., R. Beelen, K. de Hoogh, T. Bellander, G. Cesaroni, M. Cirach, C. Declercq, E. Dons, A. de Nazelle, K. Dimakopoulou, K. Eriksen, G. Falq, P. Fischer, C. Galassi, R. Grazuleviciene, J. Heinrich, B. Hoffmann, M. Jerrett, D. Keidel, M. Korek, T. Lanki, S. Lindley, C. Madsen, A. Molter, G. Nador, M. Nieuwenhuijsen, M. Nonnemacher, X. Pedeli, O. Raaschou-Nielsen, E. Patelarou, U. Quass, A. Ranzi, C. Schindler, M. Stempfelet, E. Stephanou, D. Sugiri, M.Y. Tsai, T. Yli-Tuomi, M.J. Varro, D. Vienneau, S.V. Klot, K. Wolf, B. Brunekreef, and G. Hoek (2012) Development of land use regression models for $PM_{2.5}$, $PM_{2.5}$ absorbance, $PM_{10}$ and PM coarse in 20 European study areas; results of the ESCAPE project, Environmental Science and Technology, 46(20), 11195-11205. https://doi.org/10.1021/es301948k
  13. Franklin, M., A. Zeka, and J. Schwartz (2007) Association between $PM_{2.5}$ and all-cause and specific-cause mortality in 27 US communities, Journal of Exposure Science and Environmental Epidemiology, 17(3), 279-287. https://doi.org/10.1038/sj.jes.7500530
  14. Gupta, T. and S. Dubey (2011) Field performance evaluation of a newly developed $PM_{2.5}$ sampler at IIT Kanpur, Science of the Total Environment, 409(18), 3500-3507. https://doi.org/10.1016/j.scitotenv.2011.05.020
  15. Heo, J., J.J. Schauer, O. Yi, D. Paek, H. Kim, and S.M. Yi (2014) Fine particle air pollution and mortality: importance of specific sources and chemical species, Epidemiology, 25(3), 379-388. https://doi.org/10.1097/EDE.0000000000000044
  16. Heo, J.B., P.K. Hopke, and S.M. Yi (2009) Source apportionment of $PM_{2.5}$ in Seoul, Korea, Atmospheric Chemistry and Physics, 9(14), 4957-4971. https://doi.org/10.5194/acp-9-4957-2009
  17. Hoek, G., R. Beelen, K. De Hoogh, D. Vienneau, J. Gulliver, P. Fischer, and D. Briggs (2008) A review of land-use regression models to assess spatial variation of outdoor air pollution, Atmospheric Environment, 42(33), 7561-7578. https://doi.org/10.1016/j.atmosenv.2008.05.057
  18. Hyslop, N.P. and W.H. White (2009) Estimating precision using duplicate measurements, Journal of the Air and Waste Management Association, 59(9), 1032-1039. https://doi.org/10.3155/1047-3289.59.9.1032
  19. Jetter, J.J., Z. Guo, J.A. McBrian, and M.R. Flynn (2002) Characterization of emissions from burning incense, Science of the Total Environment, 295(1), 51-67. https://doi.org/10.1016/S0048-9697(02)00043-8
  20. Jerrett, M., R.T. Burnett, R. Ma, C.A. Pope III, D. Krewski, K.B. Newbold, G. Thurston, Y. Shi, N. Finkelstein, E.E. Calle, and M.J. Thun (2005) Spatial analysis of air pollution and mortality in Los Angeles, Epidemiology, 16(6), 727-736. https://doi.org/10.1097/01.ede.0000181630.15826.7d
  21. Joly, A., A. Smargiassi, T. Kosatsky, M. Fournier, E. Dabek-Zlotorzynska, V. Celo, D. Mathieu, R. Servranckx, R. D'amours, A. Malo, and J. Brook (2010) Characterisation of particulate exposure during fireworks displays, Atmospheric Environment, 44(34), 4325-4329. https://doi.org/10.1016/j.atmosenv.2009.12.010
  22. Jung, C.R., Y.T. Lin, and B.F. Hwang (2015) Ozone, particulate matter, and newly diagnosed Alzheimer's disease: A population-based cohort study in Taiwan, Journal of Alzheimer's Disease, 44(2), 573-584. https://doi.org/10.3233/JAD-140855
  23. Keller, J.P., C. Olives, S.-Y. Kim, L. Sheppard, P.D. Sampson, A.A. Szpiro, A.P. Oron, J. Lindstrom, S. Vedal, and J.D. Kaufman (2015) A unified spatiotemporal modeling approach for predicting concentrations of multiple air pollutants in the multi-ethnic study of atherosclerosis and air pollution, Environmental Health Perspectives (Online), 123(4), 301, doi:10.1289/ehp.1408145.
  24. Kim, H.S., J.B. Huh, P.K. Hopke, T.M. Holsen, and S.M. Yi (2007) Characteristics of the major chemical constituents of $PM_{2.5}$ and smog events in Seoul, Korea in 2003 and 2004, Atmospheric Environment, 41(32), 6762-6770. https://doi.org/10.1016/j.atmosenv.2007.04.060
  25. Kim, K.N., Y.H. Lim, H.J. Bae, M. Kim, K. Jung, and Y.C. Hong (2016a) Long-term fine particulate matter exposure and major depressive disorder in a community-based urban cohort, Environmental Health Perspectives, 124(10), 1547-1553. https://doi.org/10.1289/EHP192
  26. Kim, S.Y., L. Sheppard, S. Bergen, A.A. Szpiro, P.D. Sampson, J.D. Kaufman, and S. Vedal (2016b) Prediction of fine particulate matter chemical components with a spatio-temporal model for the Multi-Ethnic Study of Atherosclerosis cohort, Journal of Exposure Science and Environmental Epidemiology, 26(5), 520-528. https://doi.org/10.1038/jes.2016.29
  27. Kunzli, N. and I.B. Tager (1997) The semi-individual study in air pollution epidemiology: a valid design as compared to ecologic studies, Environmental Health Perspectives, 105(10), 1078-1083. https://doi.org/10.1289/ehp.971051078
  28. Laden, F., J. Schwartz, F.E. Speizer, and D.W. Dockery (2006) Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study, American Journal of Respiratory and Critical Care Medicine, 173(6), 667-672. https://doi.org/10.1164/rccm.200503-443OC
  29. Lee, K., Y.J. Kim, C.H. Kang, J.S. Kim, L.S. Chang, and K. Park (2015) Chemical characteristics of long-range-transported fine particulate matter at Gosan, Jeju Island, in the spring and fall of 2008, 2009, 2011, and 2012, Journal of the Air and Waste Management Association, 65(4), 445-454. https://doi.org/10.1080/10962247.2014.1001883
  30. Lippmann, M. (2014) Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter ($PM_{2.5}$) and its chemical components: coherence and public health implications, Critical Reviews in Toxicology, 44(4), 299-347. https://doi.org/10.3109/10408444.2013.861796
  31. Okamura, T., T. Kadowaki, T. Hayakawa, Y. Kita, A. Okayama, and H. Ueshima (2003) What cause of mortality can we predict by cholesterol screening in the Japanese general population?, Journal of Internal Medicine, 253(2), 169-180. https://doi.org/10.1046/j.1365-2796.2003.01080.x
  32. Park, S.S., Y.J. Kim, and C.H. Kang (2007) Polycyclic aromatic hydrocarbons in bulk $PM_{2.5}$ and size-segregated aerosol particle samples measured in an urban environment, Environmental Monitoring and Assessment, 128(1), 231-240. https://doi.org/10.1007/s10661-006-9308-4
  33. Patterson, S.L., J.A. Rusiecki, S.L. Barnes, J.M. Heller, J.B. Sutphin, and T.A. Kluchinsky Jr. (2010) Effectiveness, suitability, and performance testing of the SKC(R) Deployable Particulate Sampler (DPS) as compared to the currently deployed Airmetrics (TM) MiniVol (TM) Portable Air Sampler, Journal of Environmental Health, 73(3), 16-22.
  34. Perrino, C., S. Canepari, and M. Catrambone (2013) Comparing the performance of Teflon and quartz membrane filters collecting atmospheric PM: influence of atmospheric water, Aerosol and Air Quality Research, 13, 137-147. https://doi.org/10.4209/aaqr.2012.07.0167
  35. Pinto, J.P., A.S. Lefohn, and D.S. Shadwick (2004) Spatial variability of $PM_{2.5}$ in urban areas in the United States, Journal of the Air and Waste Management Association, 54(4), 440-449. https://doi.org/10.1080/10473289.2004.10470919
  36. Pope III, C.A., R.T. Burnett, M.J. Thun, E.E. Calle, D. Krewski, K. Ito, and G.D. Thurston (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, Jama, 287(9), 1132-1141. https://doi.org/10.1001/jama.287.9.1132
  37. Pope III, C.A. and D.W. Dockery (2006) Health effects of fine particulate air pollution: lines that connect, Journal of the Air and Waste Management Association, 56(6), 709-742. https://doi.org/10.1080/10473289.2006.10464485
  38. Pope III, C.A., R.T. Burnett, M.C. Turner, A. Cohen, D. Krewski, M. Jerrett, S.M. Gapstur, and M.J. Thun (2011) Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure-response relationships, Environmental Health Perspectives, 119(11), 1616-1621. https://doi.org/10.1289/ehp.1103639
  39. Rao, A.K. and K.T. Whitby (1977) Nonideal collection characteristics of single stage and cascade impactors, American Industrial Hygiene Association Journal, 38(4), 174-179.
  40. Smargiassi, A., M. Baldwin, C. Pilger, R. Dugandzic, and M. Brauer (2005) Small-scale spatial variability of particle concentrations and traffic levels in Montreal: a pilot study, Science of the Total Environment, 338(3), 243-251. https://doi.org/10.1016/j.scitotenv.2004.07.013
  41. Son, J., M. Bell, and J.T. Lee (2011) Survival analysis to estimate the association between long-term exposure to different sizes of airborne particulate matter and risk of infant mortality using a birth cohort in Seoul, Korea, Epidemiology, 22(1), S166-S167.
  42. Stein, S.W., B.J. Turpin, X. Cai, P.F. Huang, and P.H. Mcmurry (1994) Measurements of relative humidity-dependent bounce and density for atmospheric particles using the DMA-impactor technique, Atmospheric Environment, 28(10), 1739-1746. https://doi.org/10.1016/1352-2310(94)90136-8
  43. Szpiro, A.A., P.D. Sampson, L. Sheppard, T. Lumley, S.D. Adar, and J.D. Kaufman (2010) Predicting intraurban variation in air pollution concentrations with complex spatio-temporal dependencies, Environmetrics, 21(6), 606-631. https://doi.org/10.1002/env.1014
  44. Szpiro, A.A., C.J. Paciorek, and L. Sheppard (2011) Does more accurate exposure prediction necessarily improve health effect estimates?, Epidemiology, 22(5), 680-685. https://doi.org/10.1097/EDE.0b013e3182254cc6
  45. Turner, M.C., D. Krewski, C.A. Pope III, Y. Chen, S.M. Gapstur, and M.J. Thun (2011) Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers, American Journal of Respiratory and Critical Care Medicine, 184(12), 1374-1381. https://doi.org/10.1164/rccm.201106-1011OC
  46. Ueda, K., S.-Y. Nagasawa, H. Nitta, K. Miura, and H. Ueshima (2012) Exposure to particulate matter and long-term risk of cardiovascular mortality in Japan: NIPPON DATA80, Journal of Atherosclerosis and Thrombosis, 19(3), 246-254. https://doi.org/10.5551/jat.9506
  47. U.S. EPA (2002) Ambient Air Monitoring Reference and Equivalent Methods, 40 CFR Part 53.
  48. U.S. EPA (2005) Emission Facts: Average Carbon Dioxide Emissions Resulting from Gasoline and Diesel Fuel, EPA420-F-05-001.
  49. U.S. EPA (2006) Reference Method for the Determination of Fine Particulate Matter as $PM_{2.5}$ in the Atmosphere, 40 CFR Part 50, Appendix L.
  50. WHO (2013) Outdoor air pollution a leading environmental cause of cancer deaths, http://www.iarc.fr/en/media-centre/iarcnews/pdf/pr221_E.pdf (accessed on Jan. 13, 2017).
  51. Yanosky, J.D. and D.L. Maclntosh (2001) A comparison of four gravimetric fine particle sampling methods, Journal of the Air and Waste Management Association, 51(6), 878-884. https://doi.org/10.1080/10473289.2001.10464320
  52. Zdziennicka, A., K. Szymczyk, and B. Janczuk (2009) Correlation between surface free energy of quartz and its wettability by aqueous solutions of nonionic, anionic and cationic surfactants, Journal of Colloid and Interface Science, 340(2), 243-248. https://doi.org/10.1016/j.jcis.2009.08.040