• Title/Summary/Keyword: Fine Particulate Matter

Search Result 285, Processing Time 0.027 seconds

The Study on the Optimal Operating Conditions of Direct Charging Type Electrospray for Particulate Matter Collection (미세먼지 집진을 위한 직접 하전 방식 정전분무의 최적 동작 조건에 관한 연구)

  • Sugi Choi;Sunghwan Kim;Haiyoung Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.474-481
    • /
    • 2023
  • This paper is an experimental study on the optimal operating conditions of direct charging type electrospray for particulate matter collection. To perform the research, a direct charging type electrospray visualization system was configured to photograph the spray shape of microdroplets, and experiments were performed with varying electrode distance, flow rate, and applied voltage, which are the main factors affecting the particulate matter collection efficacy. Through image processing, the total number of microdroplets according to each condition was analyzed, and the number of microdroplets with a diameter of 1.5 mm or less was confirmed. In addition, by calculating the number of microdroplets per power consumption according to the applied voltage, the optimal operating conditions were derived in terms of energy consumption efficacy, and the microdroplet size distribution was analyzed under the optimal operating conditions. As a result of the experiment, it was confirmed that the optimal operating condition was at a flow rate of 10 mL/min and a voltage of -20 kV in case of 5 mm electrode distance, and at a flow rate of 15 mL/min and a voltage of -30 kV in case of 100 mm electrode distance.

Human Pluripotent Stem Cell-Derived Alveolar Epithelial Cells as a Tool to Assess Cytotoxicity of Particulate Matter and Cigarette Smoke Extract

  • Jung-Hyun Kim;Minje Kang;Ji-Hye Jung;Seung-Joon Lee;Seok-Ho Hong
    • Development and Reproduction
    • /
    • v.26 no.4
    • /
    • pp.155-163
    • /
    • 2022
  • Human pluripotent stem cells (hPSCs) can give rise to a vast array of differentiated derivatives, which have gained great attention in the field of in vitro toxicity evaluation. We have previously demonstrated that hPSC-derived alveolar epithelial cells (AECs) are phenotypically and functionally similar to primary AECs and could be more biologically relevant alternatives for assessing the potential toxic materials including in fine dust and cigarette smoking. Therefore, in this study, we employed hPSC-AECs to evaluate their responses to exposure of various concentrations of diesel particulate matter (dPM), cigarette smoke extract (CSE) and nicotine for 48 hrs in terms of cell death, inflammation, and oxidative stress. We found that all of these toxic materials significantly upregulated the transcription of pro-inflammatory cytokines such as IL-1α, IL-β, IL-6, and TNF-α. Furthermore, the exposure of dPM (100 ㎍/mL) strongly induced upregulation of genes related with cell death, inflammation, and oxidative stress compared with other concentrations of CSE and nicotine. These results suggest that hPSC-AECs could be a robust in vitro platform to evaluate pulmotoxicity of various air pollutants and harmful chemicals.

Relaxing Effect of Evening Primrose Root on Skin Irritation Caused by Particulate Matter in Subway Tunnel (지하철 미세먼지에 의하여 유발되는 피부염증에 대한 달맞이꽃 뿌리 추출물의 완화 효과)

  • Shin, Myeong-Geol;Park, Eul-Yong;Park, Duckshin;Kim, Chong-Tai
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.2
    • /
    • pp.119-131
    • /
    • 2020
  • If human skin is exposed to high concentrations of particulate matter (PM2.5 and PM10) for a long time in the outdoor environment such as subway tunnel, it will be adversely affected. In particular, fine particles can damage the skin, causing inflammation and allergic reactions. This study investigated the ability of evening primrose root (EEPR) extract to suppress the skin damages caused by the fine particles. PM was collected from a subway tunnel, where high concentrations have been reported per day over the course of a study. The EEPR had higher antioxidant activity than that of control group (62.6%). The mixture of EEPR and PM inhibited the production of nitric oxide (NO), thereby alleviating skin inflammation caused by fine particle dust. EEPR had weaker cytotoxic activity than the positive control. When cells were exposed to particulate-type dust (PM10), the levels of free radicals were decreased with the increased concentrations of the extract (5, 10, 20 ㎍/mL). While at the same time more effective than positive controls. Therefore, this study proved that the Moonlight flower root extract can be used as a cosmetic material for skin by providing an effect to alleviate skin damage caused by fine particle-type dust.

A study on the monitoring of high-density fine particulate matters using W-station: Case of Jeju island (W-Station을 활용한 고밀도 초미세먼지 모니터링 연구: 제주도 사례)

  • Lee, Jong-Won;Park, Moon-Soo;Won, Wan-Sik;Son, Seok-Woo
    • Particle and aerosol research
    • /
    • v.16 no.2
    • /
    • pp.31-47
    • /
    • 2020
  • Although interest in air quality has increased due to the frequent occurrence of high-concentration fine particulate matter recently, the official fine particulate matter measuring network has failed to provide spatial detailed air quality information. This is because current measurement equipment has a high cost of installation and maintenance, which limits the composition of the measuring network at high resolution. To compensate for the limitations of the current official measuring network, this study constructed a spatial high density measuring network using the fine particulate matter simple measuring device developed by Observer, W-Station. W-Station installed 48 units on Jeju Island and measured PM2.5 for six months. The data collected in W-Station were corrected by applying the first regression equation for each section, and these measurements were compared and analyzed based on the official measurements installed in Jeju Island. As a result, the time series of PM2.5 concentrations measured in W-Station showed concentration characteristics similar to those of the environmental pollution measuring network. In particular, the results of comparing the measurements of W-Station within a 2 km radius of the reference station and the reference station showed that the coefficient of determination (R2) was 0.79, 0.81, 0.67, respectively. In addition, for W-Station within a 1 km radius, the coefficient of determination was 0.85, 0.82, 0.68, respectively, showing slightly higher correlation. In addition, the local concentration deviation of some regions could be confirmed through 48 high density measuring networks. These results show that if a network of measurements is constructed with adequate spatial distribution using a number of simple meters with a certain degree of proven performance, the measurements are effective in monitoring local air quality and can be fully utilized to supplement or replace formal measurements.

Chemical Composition Characteristics of Fine Particulate Matter at Atmospheric Boundary Layer of Background Area in Fall, 2012 (배경지역 대기경계층 미세먼지의 화학조성 특성: 2012년 가을 측정)

  • Ko, Hee-Jung;Lee, Yoon-Sang;Kim, Won-Hyung;Song, Jung-Min;Kang, Chang-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.3
    • /
    • pp.267-276
    • /
    • 2014
  • The collection of $PM_{10}$ and $PM_{2.5}$ fine particulate matter samples was made at the 1100 m site of Mt. Halla of Jeju Island, located at the atmospheric boundary layer (ABL) of background area, during the fall of 2012. Their ionic and elemental species were analyzed, in order to investigate the chemical compositions and size distribution characteristics. In $PM_{2.5}$ fine particles ($d_p$ < $2.5{\mu}m$), the concentrations of the secondary formed nss-$SO{_4}^{2-}$, $NH_4{^+}$ and $NO_3{^-}$ species were 4.84, 1.98, and $1.27{\mu}g/m^3$, respectively, showing 58.2% of the total $PM_{2.5}$ mass. On the other hand, their concentrations in $PM_{10-2.5}$ coarse particles (2.5 < $d_p$ < $10{\mu}m$) were 0.63, 0.21 and $1.10{\mu}g/m^3$, respectively, occupying 22.8% of the total $PM_{10-2.5}$ mass. The comparative study of size distribution has resulted that $NH_4{^+}$, nss-$SO{_4}^{2-}$, $K^+$ and $CH_3COO^-$ are mostly existed in fine particles, and $NO_3{^-}$ is distributed in both fine and coarse particles, but $Na^+$, $Cl^-$, $Mg^{2+}$ and nss-$Ca^{2+}$ are rich in coarse particle mode.

Study on Airborne Particulate Matter ($PM_{10}$) Monitoring in Urban and Rural Area by Using Gent SFU Sampler and Instrumental Neutron Activation Analysis (중성자 방사화분석법과 Gent SFU 샘플러를 이용한 도시의 농촌지역의 대기분지($PM_{10}$)관측 연구)

  • 정용삼;문종화;김선하;박광원;강상훈
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.453-467
    • /
    • 2000
  • The aim of this research is to collect and characterize fine particles (FPM:$\leq$2.5${\mu}{\textrm}{m}$) and coarse particles (CPM: 2.5~10${\mu}{\textrm}{m}$) using a low volume air sampler provided by the IAEA, at urban (Taejon) and rural area(Wonju) for a period of about two years(April 1996 to May 1998) and to promote a use of nuclear analytical techniques for air pollution studies. For the collection of airborne particulate matter (PM(sub)10), the Gent stacked filter unit sampler and polycarbonate membrane filters were employed. The concentration of trace elements in collected APM samples were determined byu instrumental Neutron Activation Analysis. For validation of the analytical data, internal quality control were implemented by using both the comparison of the analytical results of standard reference materials(NIST SRM 1648) and interlaboratory comparison for proficiency test (NAT-3). The standard uncertainty was less than 15% and Z-score of two samples were within $\pm$1. The monitoring of (PM(sub)10) mass concentration and elemental concentrations were carried out weekly. The average mass concentration of (PM(sub)10) in urban and rural areas were 59.2$\pm$36.5$\mu\textrm{g}$/㎥ and 41.4$\pm$23.7$\mu\textrm{g}$/㎥, respectively. To investigate the emission source, the enrichment factors were calculated for the fine and coarse particle fractions at two sites, respectively and these values were classified for anthropogenic and soil origin elements.

  • PDF

Analysis of Infiltration of Outdoor Particulate Matter into Apartment Buildings (외기 중 미세먼지의 공동주택 실내 유입에 관한 연구)

  • Bang, Jong-Il;Jo, Seong-Min;Sung, Min-Ki
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • Recently, concentration of fine and ultra-fine particulate matter(PM) has been increased in KOREA. The increase of PM in KOREA is due to increase of domestic industries and yellow dust from china. PM is known to cause diseases such as dyspnoea, asthma, arrhythmia. Since PM is harmful to human, KOREA Ministry of Environment(ME) warns people to stay indoors when the outdoor PM concentration is high. However, prior studies has shown that indoor PM concentration can be relatively high when outdoor PM concentration is high due to infiltration of PM into buildings though leakage areas. In this study, airtightness, indoor and outdoor pressure difference and PM 2.5 & 10 concentration were measured in an apartment complex to observe PM infiltrating into building. Field measurement was conducted in newly-built apartment buildings to avoid the influence of indoor PM which can be generated by residents. The airtightness test was conducted to identify the leakage areas of the apartment, such as electric outlets and supply/exhaust diffusers. The airtightness test result showed that the air leakage area of the building was dominant in buildings envelop. According to indoor and outdoor pressure difference measurement result and PM concentration measurement result, it can be concluded that outdoor PM can infiltrate into indoor by leakage areas when wind is blown toward the apartment. As a result, pressure difference formed by the external weather condition and architectural characteristics such as the airtightness in building can influence PM to infiltrate into buildings. In further studies, I/O ratio, stack-effect, infiltration and penetration factor will be considered.

Studies on Benzo(a) pyrene Concentrations in Atmospheric Particulate Matters (大氣浮游粒子狀物質中 Benzo(a) pyrene 濃度에 關한 硏究)

  • 손동헌;허문영;남궁용
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.2
    • /
    • pp.11-17
    • /
    • 1987
  • Atmospheric particulate matter (A.P.M.) was collected on quartz fiber filters from March 1985 to February 1986 at Chung-Ang University according to particle size using Andersen high-volume air smapler, and benzo (a) pyrene concentration in these particulates were analyzed by high performance liquid chromatography. The annual arithmetic mean concentration of A.P.M. was 115.50$\mug/m^3$. The annual arithmetic mean concentrations of coarse particles and fine particles in A.P.M. were 52.54$\mum/m^3$ and 62.96$\mum/m^3$ respectively. THe annual arithmetic mean concentration of benzo(a)pyrene in A.P.M. was 1.44$ng/m^3$. THe annual arithmetic mean concentrations of benzo(a)pyrene in coarse particles and fine particles were 0.05 $ng/m^3$ and 1.39 $ng/m^3$ respectively. Thus, the concentration of benzo(a)pyrene showed maldistribution of 96.53% in fine particle. A.P.M. showed wide fluctuation according to the season. The concentration of A.P.M. was lowest in summer and high in spring and winter. Coarse and fine particle concentrations in A.P.M. were highest in spring and winter, respectively. The concentrations of benzo(a)pyrene was highest in winter and lowest in summer. The concentrations of benzo(a)pyrene in fine and coarse particles were highest in winter and spring, respectively.

  • PDF