• Title/Summary/Keyword: Fine Particulate Matter

Search Result 285, Processing Time 0.031 seconds

Studies on Particle Size Distribution of Heavy Metals in the Atmosphere (大氣中 重金屬의 粒經分布에 關한 硏究)

  • Sohn, Dong-Hun;Kang, Choon-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.3
    • /
    • pp.57-63
    • /
    • 1986
  • Atmospheric particulate matter (A.P.M.) was collected on quartz fiber filters from March 1985 to May 1986 according to particle size using Andersen high-volume air sampler, and 6 heavy metals (Fe, Mn, Cu, Ni, Zn, Pb) in these particulates were analyzed by atomic absorption spectrophotometry. The arithmetic mean concentration of A.P.M. was 195.57$\mug/m^3$. The arithmetic mean concentrations of 6 metals (Fe, Mn, Cu, Ni, Zn and Pb) were 3385.04, 1451.67, 897.94, 159.68, 127.14 and 59.49 $ng/m^3$ respectively. The order of heavy metals contributing to A.P.M. was as follows: Fe > Zn > Pb > Cu > Mn > Ni. These heavy metals were devided into 3 groups according to their particle size distribution. The contents of heavy metals belonging to the 1st group (Fe, Mn) were increased with the particle size. On the contrary, the content of Pb belonging to the 2nd group (Pb) was increased with the decrease in the particle size. The heavy metal contents in the 3rd group (Ni, Cu, Zn) were lowest in the particle size range of 2.0-3.3 $\mum$ compared with particles larger or smaller tha this range. The seasonal variation of heavy metal concentration were as follows: Fe and Mn contents were highest in spring, but Ni and Pb contents were highest in winter. Statistical analysis showed that there was a significant correlation between A.P.M. and Fe in coarse particles, meanwhile between A.P.M. and Pb in the case of fine particles.

  • PDF

Nitrogen Oxide (NOx) Emissions Prediction of Gas Turbine in Coal-Fired Power Plant Using Online Learning Method (온라인 학습법을 활용한 석탄화력 발전소의 가스 터빈 내 질소산화물(NOx) 배출량 예측)

  • Jin Park;Changwan Ko;Young-Seon Jeong
    • Smart Media Journal
    • /
    • v.13 no.8
    • /
    • pp.58-66
    • /
    • 2024
  • Nitrogen oxides(NOx) in coal-fired power plants are significant contributors to air pollution, influencing the formation of ozone and fine particulate matter, thereby adversely affecting health. Therefore, accurate prediction of NOx emissions is essential. Existing researches have mainly performed based on off-line learning methods, leading to poor prediction performance with the limited training dataset. This paper proposes the online learning model of online support vector regression to predict NOx emissions from coal-fired power plants. Online learning model, which updates a model whenever new observations come out, demonstrates high prediction accuracy even when initial data is scarce. The experimental results showed that the performance of online learning prediction was better than existing off-line learning methods. The results indicated online learning method is a valuable tool for predicting NOx emissions, especially in situations where initial data is limited and data is continuously updated in real-time.

Characterization of Heavy Metals Including Mercury and Fine Particulate Emitted from a Circulating Fluidized Bed Power Plant Firing Anthracite Coals (무연탄 순환유동층 발전소로부터 배출되는 수은을 포함한 중금속 및 미세분진의 배출 특성)

  • Kim, Jeong-Hun;Yoo, Jong-Ik;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.268-274
    • /
    • 2010
  • Emission of heavy metals as hazardous air pollutants has been focused with tightening regulatory limits due to their hazardousness. Measurements and characteristic investigations of heavy metals emitted from a commercial power plant burning anthracite coal have been carried out. The plant consists of a circulating fluidized bed combustor, a cyclone, a boiler and an electrostatic precipitator(ESP) in series. Dust and gaseous samples were collected to measure main heavy metals including gaseous mercury before ESP and at stack. Dust emissions as total particulate matter (TPM), PM-10 and PM-2.5 at inlet of ESP were very high with 23,274, 9,555 and $7,790mg/Sm^3$, respectively, as expected, which is much higher than those from pulverized coal power plants. However TPM at stack was less than $0.16mg/Sm^3$, due to high dust removal efficiency by ESP. Similarly heavy metals emission showed high collection efficiency across ESP. From particle size distribution and metal enrichment in sizes, several metal concentrations could be correlated with particle size showing more enrichment in smaller particles. Mercury unlike other solid metals behaved differently by emitting as gaseous state due to high volatility. Removal of mercury was quite less than other metals due to it's volatility, which was 68% only. Across ESP, speciation change of mercury from elemental to oxidized was clearly shown so that elemental mercury was half of total mercury at stack unlike other coal power plants which equipped wet a scrubber.

Composition comparison of PM10 and PM2.5 fine particulate matter for Asian dust and haze events of 2010-2011 at Gosan site in Jeju Island (황사와 연무 시 PM10 및 PM2.5 미세먼지 조성 비교: 2010-2011년 고산지역 측정)

  • Kim, Ki-Ju;Lee, Seung-Hoon;Hyeon, Dong-Rim;Ko, Hee-Jung;Kim, Won-Hyung;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • The $PM_{10}$ and $PM_{2.5}$ samples were collected at Gosan Site of Jeju Island, and analyzed, in order to investigate the size distribution and pollution characteristics of their components. $NH{_4}{^+}$, nss-$SO{_4}^{2-}$, $K^+$, and $CH_3COO^-$ were mostly existed in fine particles. Meanwhile, $NO{_3}{^-}$ was distributed in both fine and coarse particles, and $Na^+$, $Cl^-$, $Mg^{2+}$, nss-$Ca^{2+}$ were rich in coarse particle mode. The concentrations of nss-$Ca^{2+}$ and $NO{_3}{^-}$ were increased 36.7 and 3.2 times in coarse particles, and 15.0 and 3.1 times in fine particles during the Asian Dust periods. Especially, the concentrations of crustal elemental species such as Al, Fe, Ca, K, Mg, Ti, Mn, Sr, Ba were highly increased for those periods. In the haze events, the concentrations of secondary air pollutants were increased 1.3~2.6 and 1.5~4.2 times in coarse and fine particles, respectively. Moreover, the remarkable increase of $NO{_3}{^-}$ concentration was also observed in fine particle mode. The factor analysis showed that the composition of coarse particles was influenced mainly by marine sources, followed by soil and anthropogenic sources. On the other hand, the fine particles were influenced by anthropogenic sources, followed by marine and soil sources.

Assessing removal effects on particulate matters using artificial wetland modules (인공 습지 모형을 활용한 습지의 미세먼지 저감 효과)

  • Son, Ga Yeon;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.24-30
    • /
    • 2020
  • To assess the wetland systems' capability to reduce fine dust, we used an artificial wetland module of small-sized greenhouse (70cm W × 70cm L × 60cm H) which creates a closed system. Experiment was performed twice using four species in each experiment. Non-plantation, one species, or two species condition was created in each mesocosm. We measured air quality, primarily PM2.5 and PM10 at the initial open mesocosms and 1hr later since mesocosms were closed. The dry weight of vegetation was measured at the 2nd experiment. The decreased amount of PM2.5 and PM10 was 13.7±1.3 and 13.2±1.3 ㎍·m-3hr-1 in wetland condition and 15.0±1.4 and 13.8±1.5 ㎍·m-3hr-1 in dryland condition, respectively. In 2nd experiment, the decreased amount of PM 2.5 and PM 10 in wetland condition was 13.7±1.3 and 9.2±1.5 ㎍·m-3hr-1, 15.0±1.4 and 8.8±1.4 ㎍·m-3hr-1 in dryland condition, respectively. Wetland showed higher removal effect due to its high productivity leading to more effective absorption of particulate matter. Furthermore, the aquatic characteristics of wetland system and high humidity helped purifying the air quality. This can be seen as another value of wetlands, which can be presented as one of the solutions to the problem of fine dust.

Exposure and Toxicity Assessment of Ultrafine Particles from Nearby Traffic in Urban Air in Seoul, Korea

  • Yang, Ji-Yeon;Kim, Jin-Yong;Jang, Ji-Young;Lee, Gun-Woo;Kim, Soo-Hwan;Shin, Dong-Chun;Lim, Young-Wook
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.7.1-7.9
    • /
    • 2013
  • Objectives We investigated the particle mass size distribution and chemical properties of air pollution particulate matter (PM) in the urban area and its capacity to induce cytotoxicity in human bronchial epithelial (BEAS-2B) cells. Methods To characterize the mass size distributions and chemical concentrations associated with urban PM, PM samples were collected by a 10-stage Micro-Orifice Uniform Deposit Impactor close to nearby traffic in an urban area from December 2007 to December 2009. PM samples for in vitro cytotoxicity testing were collected by a mini-volume air sampler with $PM_{10}$ and $PM_{2.5}$ inlets. Results The PM size distributions were bi-modal, peaking at 0.18 to 0.32 and 1.8 to $3.2{\mu}m$. The mass concentrations of the metals in fine particles (0.1 to $1.8{\mu}m$) accounted for 45.6 to 80.4% of the mass concentrations of metals in $PM_{10}$. The mass proportions of fine particles of the pollutants related to traffic emission, lead (80.4%), cadmium (69.0%), and chromium (63.8%) were higher than those of other metals. Iron was the dominant transition metal in the particles, accounting for 64.3% of the $PM_{10}$ mass in all the samples. We observed PM concentration-dependent cytotoxic effects on BEAS-2B cells. Conclusions We found that exposure to $PM_{2.5}$ and $PM_{10}$ from a nearby traffic area induced significant increases in protein expression of inflammatory cytokines (IL-6 and IL-8). The cell death rate and release of cytokines in response to the $PM_{2.5}$ treatment were higher than those with $PM_{10}$. The combined results support the hypothesis that ultrafine particles from vehicular sources can induce inflammatory responses related to environmental respiratory injury.

Distribution of ATP in the Deep-Sea Sediment in the KODOS 97-2 Area, Northeast Equatorial Pacific Ocean (북동적도 태평양 KODOS 97-2 해역 심해저 퇴적물 내의 ATP 분포양상)

  • Hyun, Jung-Ho;Kim, Kyeong-Hong;Chi, Sang-Bum;Moon, Jai-Woon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.142-148
    • /
    • 1998
  • Environmental baseline information is necessary in order to assess the potential environmental impact of future manganese-nodule mining on the deep-seabed ecosystem. Total ATP (T-ATP), dissolved ATP (D-ATP) and particulate ATP (P-ATP) were measured to estimate total microbial biomass and to elucidate their vertical distribution patterns in the seabed of KODOS (Korea Deep Ocean Study) area, northeast equatorial Pacific Ocean. Within the upper 6 cm depth of sediment, the concentrations of T-ATP, D-ATP and P-ATP ranged from 4.4 to 40.6, from 0.6 to 16.1, and from 3.0 to 29.2 ng/g dry sediment, respectively. Approximately 84% of T-ATP, 81% of D-ATP, and 74% of P-ATP were present within the topmost 2 cm depth of sediment, and the distributions of ATP were well correlated with water content in the sediment. These results indicate that the distribution of total microbial biomass was largely determined by the supply of organic matter from surface water column. Fine-scale vertical variations of ATP were detected within 1-cm thick veneer of the sediment samples collected by multiple corer, while no apparent vertical changes were observed in the box-cored samples. It is evident that the box-core samples were disturbed extensively during sampling, which suggests that the multiple corer is a more appropriate sampling gear for measuring fine-scale vertical distribution pattern of ATP within thin sediment veneer. Overall results suggest that the concentrations of ATP, given their clear changes in vertical distribution pattern within 6 cm depth of sediment, are a suitable environmental baseline parameter in evaluating the variations of benthic microbial biomass that are likely to be caused by deep-seabed mining operation.

  • PDF

Ex vivo High-resolution Optical Coherence Tomography (OCT) Imaging of Pleural Reaction after Pleurodesis Using Talc

  • Ahn, Yeh-Chan;Oak, Chulho;Park, Jung-Eun;Jung, Min-Jung;Kim, Jae-Hun;Lee, Hae-Young;Kim, Sung Won;Park, Eun-Kee;Jung, Maan Hong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.607-613
    • /
    • 2016
  • The pleura is known as an end target organ of exposure to toxic environmental materials such as fine particulate matter and asbestos. Moreover, long-term exposure to hazardous materials can eventually lead to fatal lung disease such as diffuse pleural fibrosis or mesothelioma. Chest computed tomography (CT) and ultrasound are gold standard imaging modalities for detection of advanced pleural disease. However, a diagnostic tool for early detection of pleural reaction has not been developed yet due to difficulties in imaging ultra-fine structure of the pleura. Optical coherence tomography (OCT), which provides cross-sectional images of micro tissue structures at a resolution of 2-10 μm, can image the mesothelium with a thickness of ~100 μm and therefore enables investigation of the early pleural reaction. In this study, we induced the early pleural reaction according to a time sequence after pleurodesis using talc, which has been widely used in the clinical field. The pleural reaction in talc grouped according to the time sequence (1st, 2nd, 4th weeks) showed a significant thickening (average thickness: 45 ± 7.5 μm, 80 ± 10.7 μm, 90 ± 12.5 μm), while the pleural reaction in sham and normal groups showed pleural change from normal to minimal thickening (average thickness: 16 ± 5.5 μm, 17 ± 4.5 μm, 15 ± 6.5 μm, and 12 ± 7.5 μm, 13 ± 2.5 μm, 12 ± 3.5 μm). The measurement of pleural reaction by pathologic examinations was well-matched with the measurement by OCT images. This is the first study for measuring the thickness of pleural reactions using a biophotonic modality such as OCT. Our results showed that OCT can be useful for evaluating the early pleural reaction.

Health and Environmental Risk Assessment of Pollutants in Pohang (포항지역 오염물질 보건.환경 위해성 평가 -미세먼지의 발생특성 및 농도분포를 중심으로-)

  • Jung, Jong-Hyeon;Choi, Won-Joon;Leem, Heon-Ho;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2719-2726
    • /
    • 2010
  • The purpose of this study was to investigate the scientific basic grounds for the assessment of health and environmental diseases resulting from air pollutants in Pohang. For this study, we investigated pollutants, weather characteristics and concentration distribution of fine particles ($PM_10$) yearly and each season, using data from Air Quality Monitoring Stations. The properties of concentration distribution and seasonal fluctuation of $PM_10$ were studied qualitatively and quantitatively using CALPUFF, air dispersion model. The average concentration of $PM_10$ for each season was spring($75.7{\mu}g/m^3$)>summer($56.8{\mu}g/m^3$)>winter($53.6{\mu}g/m^3$)>fall( $52.7{\mu}g/m^3$). In the case of spring, high concentrations appear due to the Asian dust frequently occurring. The contributions of $PM_10$ classified by the types of pollution source in Pohang were point source 62%>mobile source 33%>area source 5%. An important point is that 97% of emissions were produced from the iron manufacture in steel industry. Therefore, it is necessary to control the emission sources of pollutants and to construct an observation system at Pohang steel industrial complex from now on. It’s time to control the risk factors for health and environmental disease to protect the health of resident in Pohang and its neighboring areas.

Indoor PM2.5 Concentration Distribution and Health Risk Assessment according to the Implementation of a Seasonal Management System (미세먼지 계절관리제 시행 여부에 따른 실내 PM2.5 농도 분포 및 노출에 따른 건강위해성 평가)

  • Shin-Young Park;Dann-Ki Yoon;Hyeok Jang;Sung Won Yoon;Cheol-Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.4
    • /
    • pp.218-227
    • /
    • 2023
  • Background: Since 2019, the Ministry of Environment has implemented a seasonal fine dust management system from December to March, targeting high PM2.5 levels with the aim of reducing PM2.5 concentrations and protecting public health. The focus of improving the seasonal management system lies in the atmospheric PM2.5 levels. Considering the primary goal of protecting public health, it is necessary to analyze the policy effects from an exposure perspective rather than a concentration-based approach. Objectives: This study aims to quantitatively assess the improvement of indoor PM2.5 levels and the health impacts of the seasonal management system by comparing the periods before and during its implementation in residential environments. Methods: PM2.5 concentrations within residential environments in a metropolitan area were measured using an optical particle counter (IAQ-C7, K-weather, Ltd, Korea) at one-minute intervals during the pre-implementation period (November 21~25, 2022) and during the implementation period (December 19~23, 2022). Based on the measured PM2.5 concentrations, a quantitative evaluation of cancer and mortality risks was conducted according to age and gender. Results: The results of comparing indoor and outdoor PM2.5 concentrations before and during the implementation of the seasonal management system showed a decrease of approximately 56.6% and 47.9%, respectively. Health risk assessments revealed that both the safety-limit-based and safety-target-based Hazard Quotients (HQ) exceeded the threshold of 0.1 for children under 19 years of age, both before and after the implementation. The mortality risk decreased by approximately 47.9% after the implementation, with children aged 0-9 showing the highest mortality risk at 0.9%. Conclusions: The findings of this study confirmed the positive health impacts of the seasonal management system across all age groups, particularly children under 19 who are more vulnerable to fine dust exposure.