최근 미세먼지 수치가 급격히 상승함에 따라 이에 대한 관심도가 굉장히 높아지고 있다. 미세먼지의 노출은 호흡기 및 심혈관계 질환의 발생과 관련이 있으며, 사망률도 증가시키는 것으로 보고되고 있다. 뿐만 아니라, 산업현장에서도 미세먼지에 대한 피해가 속출한다. 그러나 현대인의 삶에서 미세먼지 노출은 불가피하다. 그러므로 미세먼지를 예측하여, 이에 대한 노출을 최소화하는 것이 건강 및 산업 피해축소에 가장 효율적인 방법일 것이다. 기존의 미세먼지 예측 모델은 농도 수치가 아닌 미세먼지의 농도 범위에 따라 좋음, 보통, 나쁨, 매우 나쁨으로만 나누어 예보하고 있다. 본 논문은 기존의 실제 기상 및 대기 질 데이터를 이용, 기계학습 알고리즘인 Artificial Neural Network (ANN)알고리즘과 K-Nearest Neighbor (K-NN)알고리즘을 상호 응용하여 미세먼지 수치 (PM 10)를 예측하고자 하였다.
본 연구는 미세먼지 농도 저감을 위해 스마트버스정류장 도입 유형에 대한 가이드라인을 제안하고자 한다. 이를 위해 스마트버스정류장 유형을 밀폐형 및 개방형으로 구분하고, 서울 강남구에 위치한 스마트버스정류장 내부와 외부 5개 지점에서 PM10 및 PM2.5를 5일간 실측하여 저감효과를 비교·분석하였다. 분석 결과 외부공간에 대한 저감효과는 두 유형에서 모두에서 미비하게 나타났으나, 밀폐형 버스정류장(PM10 26.0㎍/m3, PM2.5 20.2㎍/m3 내·외부 농도차이) 내에서 개방형 버스정류장(PM10 2.4㎍/m3, PM2.5 1.8㎍/m3 내·외부 농도차이) 내에서보다 상대적으로 우수한 농도 저감효과를 나타내었다. 이를 바탕으로 미세먼지 저감을 고려한 스마트버스정류장 도입을 검토할 경우 밀폐형을 권장한다. 또한 스마트버스정류장 외부의 미세먼지 저감효과가 미비하기 때문에 스마트버스정류장 내부 용량을 초과하는 서비스 수요 발생 시 스마트버스정류장 추가 구축이 필요하다.
본 논문에서는 한국의 미세먼지 발생원인을 분석하는 과정에서 기존 논문에서는 고려하지 않았던 지역 간 공간상관성(Spatial correlation)을 고려한 패널계량분석을 진행하였다. 기존 환경쿠즈네츠곡선(EKC, Environmental Kuznets Curve)에 대한 연구들에서, 인접한 국가 및 지역 간에 오염물질의 상호영향이 존재할 가능성이 있음에도 각 유닛이 독립이라고 가정한다. 본 논문에서는 한국의 미세먼지농도에 대한 지역 패널데이터를 이용하여 기존 EKC가 지역의 상호상관성을 고려하는 때도 성립할 수 있으며, 이러한 영향을 고려하지 않았을 때 미세먼지농도의 원인에 대해 과소 혹은 과대 추정될 수 있음을 규명하였다.
In this study, the status and characteristics of fine dust and its impact on neighboring areas were investigated to proactively respond to the government's environmental regulations expected in the future and to minimize the damage by the fine dust generated at construction waste intermediate treatment plants. In addition, since there are no such plants that can affect the surroundings with no houses or other waste treatment sites nearby, an independently located construction waste intermediate treatment plant was selected to compare the characteristics of fine dust with that from the construction waste intermediate treatment sites located in the downtown area. The conclusions of the study are as follows. (1) The measurement results of PM10 at 4 points in the plant showed that the location where the crushing facility was operating had an elevated level of fine dust at 80㎍/m3 on average and a maximum of 124㎍/m3, and the level rose to 110㎍/m3 at points where vehicles frequent. (2) The PM2.5 measurement results inside the plant showed that the average concentration of the reference point was 16㎍/m3 and the maximum value was 20㎍/m3, which was distributed within the management standard. (3) It was found that the average concentration of PM10 in the nearby area ranged from 28 to 38㎍/m3, which was similar to or lower than 36㎍/m3 of the reference point. Therefore, the concentration of the fine dust generated in the plant had a negligible effect on the increase in concentration of fine dust in nearby areas. (4) The heavy metal contents were measured from the filter paper collected from the plant. The PM10 was found to be about 14 to 26ng/m3, and PM 2.5 was 25 to 28ng/m3, which was the average of domestic atmospheric concentrations. (5) The SEM-EDX analysis results showed that the PM10 contained Si and O around 40% similarly for both. The SiO2, a component of silica occupied the most and C was present as CaCO3, which was assumed to be a limestone component. The remaining components included NaO, Al2O3, and CaO as trace oxides. (6) The SEM-EDX analysis results showed that the PM 2.5 contained 5 to 7% of Cl, which is a chlorine ion, and a small amount of K was detected at 2.51% in the sample from the shutdown plant.
본 논문에서는 CCTV를 활용하여 K-means, Sobel-mask 기반의 윤곽선 검출 기법을 이용한 영상 속 미세먼지 측정 방법을 제안한다. 제안하는 알고리즘은 CCTV 카메라를 이용하여 이미지를 수집하고 관심영역을 통해 이미지 범위를 지정한다. K-means 알고리즘을 적용하여 군집화가 완료되면 Sobel-mask를 통해 윤곽선을 검출하고 윤곽선 강도를 측정하며, 측정된 데이터를 바탕으로 미세먼지의 농도를 파악한다. 제안하는 방법은 대각선 측정에 장점을 가지는 Sobel-mask의 특성을 활용하여 산맥의 윤곽선을 추출하고 실험 결과로 미세먼지 농도에 따른 검출의 차이를 보여준다.
가정과 요식업 사업장에서 발생하는 미세먼지는 전체 미세먼지 배출량의 약 4%정도로 낮은 비율을 차지하고 있다. 하지만 요식업 사업장에서는 일시적 미세먼지 농도가 최대 60배 가까이 측정될 만큼 오염농도의 변화율이 매우 높다. 비산업 연소 사업장에서 발생하는 오염 물질은 입자상 미세먼지와 가스상 유기화합물로 구성되며, 이 오염물질을 제거하기 위해서 여러 집진원리 중 가스상 물질과 입자상 물질의 동시 제거에 효과적인 시스템인 세정집진을 적용하였다. 이는 이류체 분무 노즐을 이용한 가압수식 액체 분사 방법으로 브라운 운동의 확산 포집의 확률을 높인 방법이다. 제작된 미세먼지 제거 장치를 이용하여 노즐 분무 기압 조건과 각도 등에 따른 미세먼지 집진 시스템의 집진 효율성을 분석하였으며, 그 결과 미세먼지와 가스상 유기화합물 제거효율이 90% 이상을 만족하는 것을 확인하였다. 개발된 시스템은 기존 사업장 후드 시스템에 별도의 설치비용 없이 미세먼지 집진 제거가 가능하여 향후 높은 활용성이 기대된다.
2018년 현재, 중국에서는 편서풍을 타고 다량의 미세먼지가 한국으로 유입되고 있다. 하지만 국내에서 발생되는 미세먼지양도 무시할 수 없다. 심지어 미세먼지 발생원인의 52%가 국내요인이다. 특히 인구가 밀집된 서울에서는 다른 지역과 비교할 수 없을 만큼 미세먼지 수치가 높다. 서울시에서도 구별로 미세먼지 수치는 다르게 나타난다. 구별로 미세먼지의 발생 차이를 이해하기 위해 서울시 미세먼지 발생원인 중 가장 높은 교통량을 기준으로 판단한다. 2017년의 교통량과 미세먼지의 농도를 비교해 실제로 교통량이 영향을 미치는지, 얼마나 영향을 미치는지, 만약 영향을 주지 않는다면 그 원인은 무엇인지 R을 이용해 비교해보고 서울시 미세먼지 발생의 원인을 확실히 인식한다.
The present study investigated regional and sex differences in knowledge, perception, cognition and behavior of fine-dust protective masks for periods of high concentration of fine dust in Korea. A total of 2,012 adults from seven provinces responded to the questionnaire. The results (all p<.05) showed that 78% of respondents considered pollution from China to be the greatest contributor of fine dust. Seoul and Gyeonggi residents more frequently checked fine dust forecasts than other provinces and consulted their smartphone applications to do so more than other residents. Jeju, Gwangwon, and Jeonla residents had less knowledge of KF 80, 94, and 99 masks than residents of other provinces. Gwangwon and Jeju residents had less trust in the effectiveness of protective masks than other residents. Females perceived themselves as unhealthier respiratory, more frequently checked the concentration of fine dust, trusted more the effectiveness of masks, and more frequently wore masks, compared to male respondents. Those who self-identified their respiratory function as poor, more frequently checked fine dust forecasting, and had greater knowledge of masks, which resulted in greater trust in the protective function of masks, and finally had higher wear frequency of masks for days with high concentrations of fine dust.
본 연구에서는 최근 10년간의 미세먼지 관련 뉴스 데이터를 수집하여 LDA 분석을 통해 최적 토픽을 도출하였다. 최적 토픽으로 선별된 80개의 이슈를 미세먼지 정책의 시각에서 해석하였다. 연구결과, 기온과 같은 날씨와 관련된 정보와 미세먼지 농도가 관련되어서 이슈화되는 경향이 있었다. 다음으로 미세먼지 저감 대책의 일환으로 노후경유차 운행 제한 제도와 저감 장치 부착과 같은 이슈의 빈도수가 높았다. 국민에 대한 제도 변경 안내를 포함하여 시민과 운수업자와의 갈등도 주요한 토픽으로 나타났다. 미세먼지 문제의 해결을 위한 수소차 보급과 같은 대안도 주요 토픽으로 분석되었다. 또한 미세먼지 관련 공기청정기 등 제품 관련 주제, 취약계층을 미세먼지로부터 보호하는 정책과 관련된 주제, 연구개발을 통한 미세먼지 저감 관련 주제가 주요 화두로 제기되었다. 미세먼지 대책은 사회 이슈로 정부 정책과 밀접한 관련이 있다고 볼 수 있다. 또한 본 연구를 통해 토픽 상에서는 거시적인 정부정책 자체보다는 시민의 안전, 시혜적인 정책이나 이해관계자간의 갈등이 정부정책 변화와 연동하여 중요한 의미를 지니는 것으로 나타났다.
미세먼지는 질병, 산업·경제에 부정적인 영향을 미치고 있어 국민들은 미세먼지에 대해 예민하게 반응하고 있다. 따라서 미세먼지의 발생을 예측할 수 있다면, 미리 대응책을 마련할 수 있어 생활과 경제에 도움이 될 수 있다. 미세먼지의 발생은 기상과 미세먼지 배출원의 밀집 정도에 영향을 받는다. 산업부문은 미세먼지 배출량이 가장 많으며, 그 중에 산단은 공장들이 미세먼지 배출원이 되어 더 많은 미세먼지를 배출하는 문제가 있다. 본 연구는 지방도시에서 노후산업단지가 있는 지역을 선정하여, 미세먼지를 일으키는 요인을 탐색하고, 미세먼지 발생을 예측할 수 있는 예측모형을 개발하고자 한다. 기상 데이터와 미세먼지 관련 데이터를 활용하였고, 다중회귀분석을 통해 미세먼지 발생에 영향을 미치는 변수를 추출하였다. 이를 토대로 머신러닝 회귀학습기 모형으로 학습하여 예측력이 높은 모형을 추출하였고, 검증용 데이터를 이용하여 예측 모형의 성능을 검증하였다. 그 결과, 예측력이 높은 모형은 선형회귀모형, 가우스 과정 회귀모형, 서포트 벡터 머신으로 나타났으며, 훈련용 데이터의 비율과 예측력은 비례하지 않은 것으로 나타났다. 또한 예측치와 실측치 차이의 평균치는 크지 않지만, 미세먼지 실측치가 높을 때, 예측력이 다소 떨어지는 것으로 나타났다. 본 연구의 결과는 지자체 데이터 허브를 통해 기상데이터와 관련 도시 빅데이터를 결합함으로써 보다 체계적이고 정밀한 미세먼지 예측 서비스로 개발이 가능할 것이며, 스마트산단의 발전을 촉진하는 계기가 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.