• Title/Summary/Keyword: Fin Spacing

Search Result 34, Processing Time 0.024 seconds

Enhancement of thin film evaporation on low-fin tubes (낮은핀관의 액막 증발 촉진에 관한 연구)

  • 김내현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.674-682
    • /
    • 1998
  • In this study, thin film evaporation of water on low-fin tubes were experimentally investigated. Five low-fin tubes with different fin spacing and fin height were tested. Test range covered 0.146kg/ms $\leq$$\Gamma$$\leq$0.219kg/ms and 10㎾/$\m^2$$\leq$q $\leq$70㎾/$\m^2$. Saturation temperature was loot. Compared with the plain tube, low fin tubes enhanced the water film evaporation from 60% to 100%. Tubes with fin spacing smaller than 2mm and fin height higher than 1mm performed better than tubes with other fin configuration. However, when fin spacing was too small at high film flow or fin height was too high at low film flow, the performance decreased. The heat transfer coefficient slightly increased as the flow rate increased. Correlations are developed based on present data.

  • PDF

An Experimental Study on the Effects of Design Factors for the Performance of Fin-Tube Heat Exchanger Under Frosting Conditions (착상시 설계인자에 따른 핀-관 열교환기의 성능변화에 관한 실험적 연구)

  • 이관수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2657-2666
    • /
    • 1995
  • In this study, the effects of design factors of finned-tube heat exchanger, such as fin spacing and fin array on the frost growth and heat exchanger performance are investigated under a frosting condition. The results show that the amount of frost, frost density and blockage ratio of air flow passage increase with decreasing fin spacing. Heat transfer rate increases momentarily at the initial stage of frosting and then decreases. After that heat transfer rate continues to increase again to reach a maximum value and then decreases dramatically. It is shown that the time required for heat transfer rate to reach a maximum value becomes shorter with decreasing fin spacing, and after a maximum value, heat transfer rate decreases very fast. The maximum allowable blockage ratio is introduced to determine the operation limit of a finned-tube heat exchanger operating under frosting condition and is obtained as a function of fin spacing. It is also shown that heat transfer rate of heat exchanger with staggered fin array increases about 17% and the amount of pressure drop of air increases about 1~2 mmH$_{2}$O, compared with those of in-line type heat exchanger under frosting condition.

Numerical prediction of hydrogen storaging performance of finned metal hybride beds (휜이 달린 수소저항합금 베드의 수소저장 성능의 수치적 예측)

  • Kim, Myeong-Chan;Lee, Sang-Yong;Gu, Jae-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.520-529
    • /
    • 1998
  • Heat and mass transfer behaviors of metal hydride beds were predicted by solving a set of volume-averaged equations numerically both for the gas (hydrogen) and the solid(metal hydride) phases. Time variations of temperature and hydrogen concentration ratio distributions were obtained for internally cooled, cylindrical-shaped beds with metal(aluminum) fins imbedded in them. Also, time variations of the space-averaged hydrogen concentration ratio were obtained. Temperature and velocity of the coolant, hydrogen pressure at the gas inlet, and the fin spacing were taken as the parameters. The hydrogen absorption rate increases with the higher velocity and the lower temperature of the coolant, and with the decrease of the fin spacing. Increasing of the hydrogen pressure at the gas inlet also promotes the rate of absorption though the increasing rate gradually slows down. The amount of the hydrogen storage per unit volume of the bed decreases with the tighter fin spacing despite of the higher absorption rate ; therefore, there should be an optimum fin spacing for a given volume of the system and the amount of the hydrogen storage, in which the absorption rate is the highest.

A Study on the Entropy Generation of Single Fin-Tube Heat Exchanger (단일 핀-관 열교환기에서 엔트로피 생성에 관한 연구)

  • Pak, Hi-Yong;Lee, Kwan-Soo;Kim, Byoung-Kue
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.14-21
    • /
    • 1990
  • The entropy generation rate in a fin-tube heat exchanger is investigated as a basis for thermodynamic optimization associated with single fin-tube heat exchanger. The entropy generation (irreversibility)analysis is used to find the optimum design factor and investigate total entropy generation, optimum dimensions of fin length, tube inner and outer diameters, and fin spacing on the variation of design factors. The results of this study are as follows: As the outer diameter increases, optimum !in spacing and fin length increase but the entropy generation and optimum inner diameter decrease; As fin thickness increases, the entropy generation of system and optimum fin spacing increase; As fin length increases, entropy generation and optimum outer diameter increase.

  • PDF

Cooling Characteristics of a Strip Fin Heat Sink (스트립휜 히트싱크의 냉각특성)

  • Park. Cheol-Woo;Kim. Hyun-Woo;Jang .Chung-Sun;Riu. Kap-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.16-26
    • /
    • 2005
  • Air-cooled heat sinks are employed in many electronic cooling applications since they provide significant heat transfer enhancement and operational flexibility. Strip-shaped fin heat sink is of interest and needs to be investigated as general cooling products for more applicability. The purposes of this study are to evaluate heat sink performance without bypass flow condition and to determine optimal heat sink geometries. The results show that the decreasing rate of thermal resistance of a heat sink decreases with increasing inlet air velocity, and the increasing rate of pressure drop increases with increasing inlet air velocity, but is not affected by input power. The increasing rate of optimal longitudinal fin spacing is larger than that of transverse fin spacing. The strip fin heat sink tested in this study showed better cooling performance compared to that of other plate fin type.matism. 2004; 50(11): 3504-3515.

EFFECTS OF FIN SPACING ON CONVECTIVE HEAT TRANSFER FOR A CIRCULAR CYLINDER WITH ANNULAR FINS (환상핀이 부착된 원봉에서 핀 간격에 따른 대류열전달 해석)

  • Park, Tae Seon;Kim, Chang Ha
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • This study is to analyze the local convective heat transfer for a circular cylinder with annular fins. The relation between wall heat transfer and three-dimensional flow is investigated for different distances of annular fins. Depending on the fin spacing, the flow structure is strongly changed by the variation of horseshoe vortices. As the fin spacing increases, the heat transfer rate is maximized at a certain condition. This is clearly obtained as the Reynolds number increases, and it is closely related to the development of horseshoe vortices.

Experimental Study on the Heat Transfer Characteristics of Spiral Fin-Tube Heat Exchangers (나선형 핀튜브 열교환기의 열전달 특성에 관한 실험적 연구)

  • Yun Rin;Kim Yongchan;Kim Sru;Choi Jong Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.529-535
    • /
    • 2005
  • This study experimentally examines the air-side performance of spiral finned tube heat exchangers. The effects of fin spacing, fin height, and tube alignment were investigated. Reduction of fin spacing decreased the Colburn j factor. However, the effect of fin height on the Colburn j factor was negligible. An increase of tube row decreased the Nusselt number for both staggered and in-line tube alignments. However, the decrease of the Nusselt number for the in-line tube alignment was much more significant than that of the staggered tube alignment. The average Nusselt number of the staggered tube alignment was larger than that of the in-line tube alignment by $10\%$ when the Reynolds number ranged from 300 to 1700. An empirical correlation of the Nusselt number was developed by using geometric parameters of heat exchanger and correction factors. The correction factor considered the effects of tube alignment and number of tube rows on the heat transfer. The proposed correlation yielded a mean deviation of $4\%$ from the present data.

An Experimental Study on Air-side Performance of Fin-and-Tube Heat Exchangers with Slit Fin

  • Chang, Keun-Sun;Phan, Thanh-Long
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.627-632
    • /
    • 2006
  • An experimental study is conducted to investigate the effect of the tube row and fin spacing on the air-side heat transfer and friction characteristics of fin-tube heat exchangers with slit fin pattern. A total of twelve samples of fin-tube heat exchangers with the nominal tube diameter of 7 mm, transverse tube pitch of 19 mm and longitudinal tube pitch of 12.5 mm are tested. The thermal fluid measurements are made using a psychometric calorimeter. The raw data are reduced to the desired heat transfer coefficient in terms of j-factor and friction factor of f for various frontal air velocities, fin pitches and number of tube rows.

  • PDF

Experiments on the Cooling Characteristics of a Channel with Pin-Fin Array (핀-휜 배열을 이용한 채널의 냉각특성 실험)

  • Kim, Sang-Min;Shin, Jee-Young;Son, Young-Seok;Lee, Dae-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.31-36
    • /
    • 2003
  • Recently, the power consumption and heat generation in an electronic equipment increase as the components are miniaturized and the computing speed becomes faster. Effective cooling method is required to ensure the guaranteed performance and reliable operation of the electronic devices. The aim of the present study is to investigate the cooling characteristics of a pin-fin heat exchanger as a candidate for cooling system of the electronic devices. Various configuration of the pin-fin array is selected in order to find out the effect of spacing and diameter of the pin-fin on the heat transfer characteristics. The results are compared with the experimental data or correlations of several researchers for the channel flow with pin-fin arrays.

  • PDF

Heat Transfer and Friction Characteristics of Slit Fin and Tube Heat Exchangers in Wet Conditions (습표면 조건에서 슬릿 핀-튜브 열교환기의 열전달 및 압력강하 특성)

  • Chang, Keun-Sun;Phan, Thanh-Long
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Water condensate accumulated on the surface of a fin-and-tube heat exchanger significantly affects its thermal and hydraulic performance. The purpose of this study is to investigate the effect of condensate retention on the air-side heat transfer performance and flow friction. Total 12 samples of slit and plate fin-and-tube heat exchangers with varying fin spacing and number of tube rows are tested under dry and wet conditions. The thermal fluid measurements are made using a psychometric calorimeter. Frontal air velocity varies in the range from 0.7 m/s to 1.5 m/s. Using the experimental data, presented are the heat transfer coefficients in terms of Colburn j-factor and friction factor.