• Title/Summary/Keyword: Filtration rate

Search Result 710, Processing Time 0.033 seconds

A KINETIC ANALYSIS OF ORGANIC RELEASE FROM THE AQUIFER SOIL IN RIVERBANK/BED FILTRATION

  • Ahn, Kyu-Hong;Moon, Hyung-Joon;Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.199-204
    • /
    • 2005
  • Experiments were performed to estimate the organic release from the aquifer soil in riverbank and/or riverbed filtration via a kinetic approach. Organic release was assumed as a reaction of first order regarding concentrations in both soil and water phases. The reaction rate constants were obtained by comparing the model predictions with the experimental data of organic release reaction and the equilibrium distribution of organic matter between water and soil phases. Results show that the organic release from the aquifer soil was not negligible under normal conditions in Korea reaching 4.7mg-COD/L-day. This indicates that manganese and iron start to be released from aquifer soil in the riverbank filtration in the middle reach of the Nakdong river if the travel time of the filtrate exceeds about 5 days. It was also seen that the COD of the soil organic matter was 0.89mg-COD/mg-OM and that 65% of the COD was BOD5.

Pilot Study Analysis of Three Different Processes in Drinking Water Treatment

  • Kim, Dae-Ho;Lee, Byoung-Ho
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.237-242
    • /
    • 2011
  • In this study, three pilot-scale plants with the capacity 30 $m^3$/day were designed and set up to treat reservoir water for the production of drinking water. Three treatment processes were compared in the pilot testing: process 1 (coagulation- flocculation- sedimentationsand filtration- ozone- BAC); process 2 (coagulation- flocculation- sedimentation- microfiltration-ozone- BAC); and process 3 (coagulation- flocculation- sedimentation- sand filtration- GAC). The quality of water has been evaluated on the basis of selected parameters such as turbidity, color, consumption of $KMnO_4$, dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), geosmin and 2-MIB. A detailed assessment of performance was carried out during a five months operation. Process 2 was found to have better removal efficiency of DOC, THMFP, geosmin and 2-MIB than process 1 and process 3 under identical conditions, although the removal rate of color was found to be the same in the three cases.

The adaptive filter configuration for down stream of Naktong river (낙동강 하류원수에 적합한 여과지의 여재구성)

  • 김상구;류동춘
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.481-488
    • /
    • 1995
  • This study was carried out to evaluate the variations of headloss rate and of specific deposit to depths with effective size of media and configuration of filter layer during algae blooming period. 0.51mm size media was disqualified because most of headloss occurred rapidly below 5cm from surface layer however 0.91mm size media acted deep filtration more than 20cm from top, as result 0.91mm sixte media filter had 2~3 times longer filtration time than 0.51mm sixte media filter, but 0.91mm size media have break-through potentiality. multi-layer filter with 1.02mm anthracite and 0.51mm sand had large deposit volume in upper layer that could longer filtration time, moreover smaller media in lower layer that could protect break-through.

  • PDF

Non-equilibrium Monte Carlo Simulations for Critical Flux of Hard Sphere Suspensions in Crossflow Filtration

  • Kim, Albert S.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.33-47
    • /
    • 2008
  • Non-equilibrium (irreversible) themodynamics is used to investigate colloidal back-diffusion during crossflow membrane filtration. The chemical potential is generalized as a superposition of equilibrium and irreversible contributions, originating from Brownian and shear-induced diffusion, respectively. As a result, an effective drag force is derived using the irreversible thermodynamics for a particle undergoing both Brownian and shear-induced diffusion in a sheared concentrated suspension. Using the drag force, a hydrodynamic force bias Monte Carlo method is developed for crossflow membrane filtration to determine the critical flux of hard sphere suspensions. Effects of shear rate and particle size on the critical flux are studied, and results show a good agreement with experimental observations reported in the literature.

  • PDF

Influence of Debrisoquine on Renal Function of Dogs (Debrisoquine이 개의 신장기능에 미치는 영향)

  • 임동윤
    • YAKHAK HOEJI
    • /
    • v.25 no.1
    • /
    • pp.15-25
    • /
    • 1981
  • This study was attempted to investigate the action of debrisoquine, a sympathetic blocking agent presently employed in treating hypertension, on renal function and to elucidate the mechanism of its action. Debrisoquine, given intravenously, elicited increased urine flow, osmolar and free water clearances, along with marked increases in excretion of both sodium and potassium. Glomerular filtration rate also increased, but renal plasma flow tended to decrease, so that the filtration fraction tended to increase. Rates of reabsorption of sodium and potassium in renal tubules were also significantly diminished. The diuresis induced by debrisoquine was completely blocked by treatment with phentolamine and reserpine, and also markedly inhibited by acute renal denervation. Debrisoquine, when injected directly into a renal artery, produced antidiuretic effect and a reduction in urinary excretion of sodium and potassium, along with diminished renal plasma flow and increased filtration fraction. The above observations indicate that debrisoquine, when given intravenously, induces diuresis in the dog as a result of both diminished tubular reabsorption of electrolytes and of renal hemodynamic changes, which seem to be related to its inhibitory action of catecholamine-release from the sympathetic nerve endings.

  • PDF

Development of Riverbank Filtration Water Supply and Return System for Sustainable Green House Heating and Cooling (지속가능 온실 냉난방을 위한 강변여과수 취수 및 회수시스템 개발)

  • Cho, Yong;Kim, Dae-Geun;Kim, Hyoung-Soo;Moon, Jong-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.20-29
    • /
    • 2012
  • The green house on the waterfront is air-conditioned by a water-source heat pump system with riverbank filtration water. In order to supply riverbank filtration water in alluvium aquifer, the riverbank filtration facility for water intake and recharge, two pumping wells and one recharge well, has been constructed. The research site in Jinju, Korea was chosen as a good site for riverbank filtration water supply by the surface geological survey, electrical resistivity soundings, and borehole surveys. In the results of two boreholes drilling at the site, it was revealed that the groundwater table is about 3 m under the ground, and that the sandy gravel aquifer layer in the thickness of 6.5 m and 3.5 m occurs at 5 m and 7 m in depth below the ground level respectively. To prevent the recharge water from affecting the pumped water which might be used as heat source or sink, the distance between pumping and recharge wells is designed at least 70 m with a quarter of recharged flow rate. It is predicted that the transfer term, the recharge water affects the pumping well, is over 6 months of heating season. Hydrogeological simulation and underground water temperature measurement have been carried out for the pumping and recharge well positions in order to confirm the capability of sustainable green house heating and cooling.

Dust Filtration Characteristics of Pleated Filter Bags Installed in CYBAGFILTER® (주름필터를 적용한 CYBAGFILTER®의 여과성능 특성)

  • Park, Young-Ok;Roh, Hak-Jae;Rhee, Young-Woo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.483-491
    • /
    • 2008
  • The filtration characteristics of $CYBAGFILTER^{(R)}$ unit with pleated filter bags were evaluated by comparing the performance of the unit with the lower part of cyclone shape with that of the unit with conventional lower part. Results from the test were also compared with those from the previous research with the $CYBAGFILTER^{(R)}$ in which round filter bags were installed. $CYBAGFILTER^{(R)}$ is the unit which combines the centrifugal separation mechanism and the fabric filtration mechanism in a single unit for efficient removal of particulate matters. The pleated filter bags are made of pleated fabric with an extension of the filtration area about 3 times compared with the conventional round filter bags. The results from the test using pleated filter bags showed an overall collection efficiency of over 99.9% regardless of the shape of lower part installed. When the lower part of cyclone shape was installed, the filter cleaning interval was over 2 times longer compared with that when the conventional lower part was installed. At the same conditions of filtration velocity and filter pressure drop, the $CYBAGFILTER^{(R)}$ with the lower part of cyclone shape, in which the pleated filter bags are installed, can be operated with a flow rate of round 3 times higher than that with conventional round filter bags.

A Primary Study on the Potential of Floodplain Filtration in Korea (우리나라에서 홍수터여과의 가능성에 대한 기초조사)

  • Choi, Myung-Ho;Kim, Kyeong-Soo;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.70-78
    • /
    • 2009
  • Floodplain areas of major South Korean rivers were determined by analyzing topographical maps and hydraulic properties of floodplain soil were measured using disc tension infiltrometer. To assess the possibility of treating secondary effluents of municipal wastewater with floodplain soil, a computer code for the analysis of unsaturated flow in soil was employed along with searches conducted in the literature. Based on the data generated, an estimate of total floodplain filtration capacity in Korea was obtained. The results of our study reveal that Korean floodplains have surface soil that is adequate for treating water. Moreover, the distributions of floodplains are substantial over the entire reaches of the rivers, indicating that the conditions are favorable for floodplain filtration as additional treatment of secondary effluent. The capacity of floodplain filtration in Korea is circa 182,000,000 $m^3$/day and most of the rivers are estimated to have enough capacity of floodplain filtration to meet all the secondary effluent, indicating that this technology may be expected to make further improvements on river water quality. Furthermore, this method may also be applied to better the source-water quality for drinking water.

Effect of Inorganic Particles on Organic Fouling in Pressurized Membrane Filtration (가압식 분리막 여과에서 무기입자의 존재가 유기파울링에 미치는 영향)

  • Jang, Hoseok;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.131-137
    • /
    • 2020
  • In this study, effect of inorganic particles on organic fouling was investigated by a laboratory-scaled pressurized membrane filtration. In order to cause organic fouling, sodium alginate (SA) was used as a feed solution. Regardless of the presence of inorganic SiO2 particles, the complete pore blocking played an important role in determining the fouling rate during the initial period of membrane filtration. However, the formation of cake layer resulted in the membrane fouling more dominantly as filtration time progressed. In the presence of inorganic particles, both specific cake resistance and compressibility associated with the membrane fouling formed were relatively lower than that without SiO2 particles. Membrane fouling was more severe at constant flux mode of filtration than that observed at constant pressure mode probably due to the concomitant increase of compressibility of fouling layer with transmembrane pressure (TMP). It was found that the presence of SA and SiO2 particles in feed solution provided the synergistic effect on the hydraulic backwashing to reduce membrane fouling as compared to the SA solution alone without the inorganic particles.

Application of a Pulse Electric Field to Cross-flow Ultrafiltration of Protein Solution

  • Kim, Hyong-Ryul;Lee, Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.46-50
    • /
    • 1999
  • The application of pulsed electric field was investigated in the crossflow ultrafiltration of BSA (bovine serum albumn) to economize the application time of electric current as well as to avoid inherent problems of long-term application of electric field. During the application of various cyclic patterns of pulsed electric current, the averaged filtration flowrate and the degree of concentration were maintained higher than those obtained in the absence of electric current application. The temperature increase, pH change, and BSA loss by electrodeposition were all negligible during the operation. The averaged filtration flowrate increased as the ON/OFF duration ratio of electric current was higher and as the period of ON/OFF cycle was shorter. The re-establishment of concentration polarization was dependent to the duration of current OFF state and, therefore, a longer duration of OFF state was not favorable in maintaining higher filtration flow rate. Although the averaged filtration flowrate was enhanced as the magnitude of electric current increased, the flowrate enhancement became smaller as the magnitude of current value above which the degree of electrokinetic depolarization is no further improved.

  • PDF