• Title/Summary/Keyword: Filter-based technique

Search Result 699, Processing Time 0.026 seconds

Performance Analysis on Multipath Fading Channel Equalization in a Generalized Filter Bank Based OFDM System (일반화된 필터 뱅크를 적용한 OFDM 시스템에서의 다중 경로 폐이딩 채널 등화기 성능 분석)

  • 박태윤;최재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1841-1847
    • /
    • 2001
  • A novel decision-feedback equalization technique for a generalized filter bank based orthogonal frequency division multiplexing data transmission system operating in a frequency selective multipath fading channel is presented in this paper. At the cost of relatively increased computational complexity in comparison to the conventional OFDM systems, the proposed system achieves a better performance in trims 7f bit error rates. The simulation results confirm of superiority and robustness of our method, particularly, in the low SNR channel environments.

  • PDF

One-Cycle Control Strategy with Active Damping for AC-DC Matrix Converter

  • Liu, Xiao;Zhang, Qingfan;Hou, Dianli
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.778-787
    • /
    • 2014
  • This study presents an input filter resonance mitigation method for an AC-DC matrix converter. This method combines the advantages of the one-cycle control strategy and the active damping technique. Unnecessary sensors are removed, and system cost is reduced by employing the grid-side input currents as feedback to damp out LC resonance. A model that includes the proposed method and the input filter is established with consideration of the delay caused by the actual controller. A zero-pole map is employed to analyze model stability and to investigate virtual resistor parameter design principles. Based on a double closed-loop control scheme, the one-cycle control strategy does not require any complex modulation index control. Thus, this strategy can be more easily implemented than traditional space vector-based methods. Experimental results demonstrate the veracity of theoretical analysis and the feasibility of the proposed approach.

A Novel Harmonic Identification Algorithm for the Active Power Filters in Non-Ideal Voltage Source Systems

  • Santiprapan, Phonsit;Areerak, Kongpol;Areerak, Kongpan
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1637-1649
    • /
    • 2017
  • This paper describes an intensive analysis of a harmonic identification algorithm in non-ideal voltages source systems. The dq-axis Fourier with a positive sequence voltage detector (DQFP) is a novel harmonic identification algorithm for active power filters. A compensating current control system based on repetitive control is presented. A design and stability analysis of the proposed current control are also given. The aim of the paper is to achieve a robustness of the harmonic identification in a distorted and unbalanced voltage source. The proposed ideas are supported by a hardware in the loop technique based on a $eZdsp^{TM}$ F28335 and the Simulink program. The obtained results are presented to demonstrate the performance of the harmonic identification and the control strategy for the active power filter in non-ideal systems.

Traceback Technique using Table-based Route Management under Mobile Ad Hoc Network Environment (Mobile Ad Hoc Network에서 테이블 기반 경로 관리를 이용한 역추적 기법)

  • Yang, Hwan Seok;Yoo, Seung Jae
    • Convergence Security Journal
    • /
    • v.13 no.1
    • /
    • pp.19-24
    • /
    • 2013
  • MANET has a highly dynamic topology because it consists of only mobile nodes. Various attacks using these characteristics exist. Among them, damage of the attacks based flooding such as DoS or DDos is large and traceback of the attack node is not easy. It is because route information by moving of intermediate nodes which pass the data changes frequently. In this paper, we propose table-based traceback technique to perform efficient traceback although route information by moving of nodes changes frequently. Cluster head manages route management table in order to form cluster status table and network topology snapshot for storing the location information of mobile nodes when cluster member nodes change. Also, bloom filter is used to reduce the amount of storing route information. The performance of the proposed technique is confirmed through experiment.

Single Image Haze Removal Technique via Pixel-based Joint BDCP and Hierarchical Bilateral Filter (픽셀 기반 Joint BDCP와 계층적 양방향 필터를 적용한 단일 영상 기반 안개 제거 기법)

  • Oh, Won-Geun;Kim, Jong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.257-264
    • /
    • 2019
  • This paper presents a single image haze removal method via a pixel-based joint BDCP (bright and dark channel prior) and a hierarchical bilateral filter in order to reduce computational complexity and memory requirement while improving the dehazing performance. Pixel-based joint BDCP reduces the computational complexity compared to the patch-based DCP, while making it possible to estimate the atmospheric light in pixel unit and the transmission more accurately. Moreover the bilateral filter, which can smooth an image effectively while preserving edges, refines the transmission to reduce the halo effects, and its hierarchical structure applied to edges only prevents the increase of complexity from the iterative application. Experimental results on various hazy images show that the proposed method exhibits excellent haze removal performance with low computational complexity compared to the conventional methods, and thus it can be applied in various fields.

The Technique of Blocking Artifacts Reduction Method Based on Spatially Adaptive Image Restoration (공간 적응적 영상복원을 이용한 블록화 현상 제거 기법)

  • Kim, Tae-Keun;Woo, Hun-Bae;Paik, Joon-Ki
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.46-54
    • /
    • 1998
  • In this paper we propose a fast adaptive image restoration filter using DCT-based block classification for reducing block artifacts in compressed images. In order to efficiently reduce block artifacts, edge direction of each block is classified by using the DCT coefficients, and the constrained least square (CLS) on the observation that the quantization operation in a series of coding process is a nonlinear and many-to-one mapping operator. And then we propose an approximated version of constrained optimization technique as a restoration process for removing the nonlinear and space-varying degradation operator. For real-time implementation, the proposed restoration filter can be realized in the form of a truncated FIR filter, which is suitable for postprocessing reconstructed images in HDTV, DVD, or video conference systems.

  • PDF

Link Quality Enhancement with Beamforming Using Kalman-based Motion Tracking for Maritime Communication

  • Kyeongjea Lee;Joo-Hyun Jo;Sungyoon Cho;Kiwon Kwon;Dong Ku Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1659-1674
    • /
    • 2024
  • Conventional maritime communication struggles to provide high data rate services for Internet of Things (IoT) devices due to the variability of maritime environments, making it challenging to ensure consistent connectivity for onboard sensors and devices. To resolve this, we perform mathematical modeling of the maritime channel and compare it with real measurement data. Through the modeled channel, we verify the received beam gain at buoys on the ocean surface. Additionally, leveraging the modeled wave motions, we estimate future angles of the buoy to use the Extended Kalman Filter (EKF) for design beamforming strategies that adapt to the evolving maritime environment over time. We further validate the effectiveness of these strategies by assessing the results from an outage probability perspective. focuses on improving maritime communication by developing a dynamic model of the maritime channel and implementing a Kalman filter-based buoy motion tracking system. This system is designed to enable precise beamforming, a technique used to direct communication signals more accurately. By improving beamforming, the aim is to enhance the quality of communication links, even in challenging maritime conditions like rough seas and varying sea states. In our simulations that consider realistic wave motions, you've observed significant improvements in link quality due to the enhanced beamforming technique. These improvements are particularly notable in environments with high sea states, where communication challenges are typically more pronounced. The progress made in this area is not just a technical achievement; it has broad implications for the future of maritime communication technologies. This paper promises to revolutionize the way we approach communication in maritime environments, paving the way for more reliable and efficient information exchange on the seas.

Sensorless speed control of permanent magnet synchronous motor using square-root extended kalman filter (제곱근 확장 칼만 필터에 의한 영구자석 동기전동기의 센서리스 속도제어)

  • Moon, Cheol;Kwon, Young-Ahn
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.217-222
    • /
    • 2016
  • This study investigates the design, analysis, and implementation of the square-root extended Kalman filter by using an algorithm derived by combining the Potter or Carlson algorithm with the modified Gram-Schmidt algorithm, for sensorless speed control of a permanent-magnet synchronous motor. The sensitivity of the Kalman filter to round-off errors is a well-known problem. A possible way to address this limitation is by combining the square-root concept and Kalman filter that can improve the numerical performance and solve instability-related problems such as divergence. This paper presents the design and analysis of the implementation of such a square-root extended Kalman filter. To demonstrate the performance of the proposed filter, experimental results under several operating conditions, such as high and low speeds, reversal rotation, detuned parameters and load test, have been analyzed. Further, code sizes and operation times have been compared. Experimental results establish the performance of the proposed square-root extended Kalman filter-based estimation technique for sensorless speed control of a permanent-magnet synchronous motor.

X-Ray Image Enhancement Using a Boundary Division Wiener Filter and Wavelet-Based Image Fusion Approach

  • Khan, Sajid Ullah;Chai, Wang Yin;See, Chai Soo;Khan, Amjad
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • To resolve the problems of Poisson/impulse noise, blurriness, and sharpness in degraded X-ray images, a novel and efficient enhancement algorithm based on X-ray image fusion using a discrete wavelet transform is proposed in this paper. The proposed algorithm consists of two basics. First, it applies the techniques of boundary division to detect Poisson and impulse noise corrupted pixels and then uses the Wiener filter approach to restore those corrupted pixels. Second, it applies the sharpening technique to the same degraded X-ray image. Thus, it has two source X-ray images, which individually preserve the enhancement effects. The details and approximations of these sources X-ray images are fused via different fusion rules in the wavelet domain. The results of the experiment show that the proposed algorithm successfully combines the merits of the Wiener filter and sharpening and achieves a significant proficiency in the enhancement of degraded X-ray images exhibiting Poisson noise, blurriness, and edge details.

Enhancing Medical Images by New Fuzzy Membership Function Median Based Noise Detection and Filtering Technique

  • Elaiyaraja, G.;Kumaratharan, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2197-2204
    • /
    • 2015
  • In recent years, medical image diagnosis has growing significant momentous in the medicinal field. Brain and lung image of patient are distorted with salt and pepper noise is caused by moving the head and chest during scanning process of patients. Reconstruction of these images is a most significant field of diagnostic evaluation and is produced clearly through techniques such as linear or non-linear filtering. However, restored images are produced with smaller amount of noise reduction in the presence of huge magnitude of salt and pepper noises. To eliminate the high density of salt and pepper noises from the reproduction of images, a new efficient fuzzy based median filtering algorithm with a moderate elapsed time is proposed in this paper. Reproduction image results show enhanced performance for the proposed algorithm over other available noise reduction filtering techniques in terms of peak signal -to -noise ratio (PSNR), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), image enhancement factor (IMF) and structural similarity (SSIM) value when tested on different medical images like magnetic resonance imaging (MRI) and computer tomography (CT) scan brain image and CT scan lung image. The introduced algorithm is switching filter that recognize the noise pixels and then corrects them by using median filter with fuzzy two-sided π- membership function for extracting the local information.