• Title/Summary/Keyword: Film performance

Search Result 2,487, Processing Time 0.026 seconds

Evaluation of Contrast-detail Characteristics of an A-Se Based Digital X-ray Imaging System (A-Se 기반 디지털 X-선 영상장치의 Contrast-detail 특성 평가)

  • Hyun, Hye-Kyung;Park, So-Hyun;Kim, Keun-Young;Cho, Hee-Moon;Cho, Hyo-Sung
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2007
  • In this study, we have performed contrast-detail analysis for an amorphous selenium(a-Se) based digital X-ray imaging system by using a contrast-detail phantom(CDRAD 2.0) to test its low contrast performance. The X-ray imaging system utilizes an 500-mm-thick a-Se semiconductor X-ray absorber coated over an amorphous silicon(a-Si) TFT(thin-film transistor) detector matrix with a $139mm{\times}139mm$ pixel size and a $46.7cm{\times}46.7cm$ active area. In the measurement of contrast-detail curves we first acquired X-ray images of the CDRAD 2.0 phantom at given test conditions(i.e., 40, 50, 60, 70, 80 kVp, and 16 mA.s), and then evaluated the contrast-detail characteristics of the imaging system from each phantom image by using an image quality factor called the image-quality-figure-inverse(IQFinv). The IQFinv values for the imaging system gradually improved with the photon fluence, indicating the improvement of image visibility: 24.4, 35.3, 39.2, 41.5, and 43.4 at photon fluences of $1.8{\times}105$, $5.9{\times}105$, $11.3{\times}105$, $19.4{\times}105$, and $29.4{\times}105$ photons/$mm^2$, respectively.

  • PDF

Texturing Multi-crystalline Silicon for Solar Cell (태양전지용 다결정실리콘 웨이퍼의 표면 처리용 텍스쳐링제)

  • Ihm, DaeWoo;Lee, Chang Joon;Suh, SangHyuk
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 2013
  • Lowering surface reflectance of Si wafers by texturization is one of the most important processes for improving the efficiency of Si solar cells. This paper presents the results on the effect of texturing using acidic solution mixtures containing the catalytic agents to moderate etching rates on the surface morphology of mc-Si wafer as well as on the performance parameters of solar cell. It was found that the treatment of contaminated crystalline silicon wafer with $HNO_3-H_2O_2-H_2O$ solution before the texturing helps the removal of organic contaminants due to its oxidizing properties and thereby allows the formation of nucleation centers for texturing. This treatment combined with the use of a catalytic agent such as phosphoric acid improved the effects of the texturing effects. This reduced the reflectance of the surface, thereby increased the short circuit current and the conversion efficiency of the solar cell. Employing this technique, we were able to fabricate mc-Si solar cell of 16.4% conversion efficiency with anti-reflective (AR) coating of silicon nitride film using plasma-enhanced chemical vapor deposition (PECVD) and Si wafers can be texturized in a short time.

Design of a Full-Printed NFC Tag Using Silver Nano-Paste and Carbon Ink (은 나노 분말과 카본 잉크를 이용한 완전 인쇄형 NFC 태그 설계)

  • Lee, Sang-hwa;Park, Hyun-ho;Choi, Eun-ju;Yoon, Sun-hong;Hong, Ic-pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.716-722
    • /
    • 2017
  • In this paper, a fully printed NFC tag operating at 13.56 MHz was designed and fabricated using silver nano-paste and carbon ink. The proposed NFC tag has a printed coil with an inductance of $2.74{\mu}H$ on a PI film for application to an NFC tag IC with an internal capacitance of 50 pF. Screen printing technology used in this paper has advantages such as large area printing for mass production, low cost and eco-friendly process compared to conventional PCB manufacturing process. The proposed structure consists of a circular coil implemented as a single layer using silver nano-paste and carbon ink, a jumper pattern for chip mounting between the outer edge and the center of the coil, and an insulation pattern between the coil and the jumper pattern. In order to verify the performance of the proposed NFC tag, we performed the measurements of the printing line width, thickness, line resistance, adhesion and environmental reliability, and confirmed the suitability of the NFC tag based on the full-printed manufacturing method.

Preparation and Characterization of Crosslinked Copolymer Membrane Containing Sulfonated Poly(ether sulfone) and p-Phenylene Terephthalamide Segments (Sulfonated Poly(ether sulfone)과 p-Phenylene Terephthalamide 세그먼트를 포함하는 가교 공중합체 멤브레인의 제조 및 특성 연구)

  • Kim, Jung-Min;Hwang, Seung-Sik;Cho, Chang-Gi
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.106-112
    • /
    • 2011
  • Aromatic copolyamides were prepared and their applicability to proton exchange membrane was studied. The copolymers contain two segments; thermally stable and mechanically strong poly (p-phenylene terephthalamide) (PPTA), and easily processable and good film-forming polysulfone. For the copolymers, different ratios of amine-terminated sulfonated ether sulfone monomer, terephthaloyl chloride, and p-phenylene diamine were sequentially reacted. The obtained copolymers were mixed with trimethylolpropane triglycidyl ether (TMPTGE), thermally cured, and converted into proton exchange membranes for fuel cell application. The reactions at each step and the molecular characteristics of precursor copolymers were confirmed by $^1H$ NMR, FTIR, and titration. The performance of the membranes was measured in terms of water uptake and proton conductivity. The water uptake, ion exchange capacity (IEC), and proton conductivity of the membranes increased with the increase of sulfonated ether sulfone segment content. Membrane containing 60 mol% sulfonic acid sulfone segment showed 1.88 meq/g IEC value. Water uptake was limited less than 110 wt% and the highest proton conductivity was up to $7.4{\times}10^{-2}$ S/cm ($25^{\circ}C$, RH=100%).

Preparation of Forward Osmosis Membranes with Low Internal Concentration Polarization (농도 분극이 저감된 정삼투 분리막 제조)

  • Kim, Nowon;Jung, Boram
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.453-462
    • /
    • 2014
  • Thin film composite (TFC) polyamide (PA) membranes were prepared on polyester (PET) nonwoven reinforced polysulfone supports for forward osmosis (FO) processes. PSF (polysulfone) supports were prepared via the phase inversion process from PSF casting solutions in dimethyl formamide (DMF) solvents (19 wt%) by using a PET nonwoven (thickness of $100{\mu}m$) as a mechanical reinforcing material for reverse osmosis (RO) membrane. The PSF support from 19 wt% of DMF/PSF casting solution showed sponge-like morphology and asymmetric internal structure. To reduce the internal concentration polarization in FO operation, thin ($20{\mu}m$ of thickness) nonwoven-supported PSF supports were prepared by using PSF/DMF casting solution (9~19 wt%). A desirable support structure with a highly porous sponge-like morphology were achieved from the thin nonwoven-supported PSF layer prepared with 9~12 wt% casting solution. A crosslinked aromatic polyamide layer was fabricated on top of each support to form a TFC PA membrane. The tested sample from 12 wt% of DMF/PSF casting solution presented outstanding FO performance, almost 5.5 times higher water flux (24.3 LMH) with low reverse salt flux (RDF, 1.5 GMH) compared to a thick nonwoven rainforced membrane (4.5 LMH of flux and 3.47 GMH of RSF). By reducing the thickness of the nonwoven and optimizing PSF concentration of casting solution, the morphology of the prepared membranes were changed from a dense structure to a porous sponge structure in the boundary area between nonwoven and PET support layer.

The Development of a Multi-Purpose Irradiator and the Characteristic of Dose Distribution (다목적 방사선 조사장치 개발 및 선량분포특성)

  • Lee, Dong-Hoon;Ji, Young-Hoon;Lee, Dong-Han;Kim, Yoon-Jong;Hong, Seung-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.42-48
    • /
    • 2002
  • The design, construction and performance test of a convenient multi-purpose irradiator is described. A multi-purpose irradiator using Cesium-137 has been developed for studies of low dose radiation effects in biology and for calibration of Thermo Luminescent dosimeter(TLD). During the operation, three rods of radioactive material which are 10cm in length revolve 180 degrees and irradiate biological samples, or TLD, and return to their shielded position, after the programmed time. A programmable Logic Controller(PLC) controls the sequence of operation, interlock, motor rotation and safety system. The rotation speed of biological samples can vary up to 20 RPM. A real time monitoring system was also incorporated to check and control the operation status of the irradiator. The capacity of the irradiation chamber was 4.5 liters. The isodose distribution at arbitrary vertical planes was measured by using film dosimetry. The dose-rate was 0.13 cGy/min in air and 0.11 cGy/min in water equivalent material in the case of Cesium-137. Range of activity was 2 Ci. The homogeneity of dose distribution in the chamber was ${\pm}$7%. The actual radiation level on the surface was within permissible levels. The irradiator had a maximum 0.35 mR/min radiation leakage on its surface.

Fabrication and Property Evaluation of Tubular Segmented-in-Series Solid Oxide Fuel Cell (SOFC) (세그먼트 관형 SOFC의 제작 및 특성 평가)

  • Yun, Ui-Jin;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul;Han, Kyoo-Seung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.562-566
    • /
    • 2012
  • A novel design of tubular segmented-in-series(SIS) solid oxide fuel cell (SOFC) sub module was presented in this paper. The tubular ceramic support was fabricated by the extrusion technique. The NiO-YSZ anode and the yttria-stabilized zirconia (YSZ) electrolyte were deposited onto the ceramic support by dip coating method. After sintering at $1350^{\circ}C$ for 5 h, a dense and crack-free YSZ film was successfully fabricated. Also, the multi-layered cathode composed of LSM-YSZ composite, LSM and LSCF were coated onto the sintered ceramic support by dip coating method and sintered at $1150^{\circ}C$. The performance of the tubular SIS SOFC cell and sub module electrically connected by the Ag-glass interconnect was measured and analysed with different fuel flow and operating temperature.

Fabrication of Silane-crosslinked Proton Exchange Membranes by Radiation and Evaluation of Fuel Cell Performance (방사선을 이용한 실란 가교구조의 유/무기 복합 수소이온 교환막 제조 및 연료전지 성능 평가)

  • Lee, Ji-Hong;Sohn, Joon-Yong;Shin, Dong-Won;Song, Ju-Myung;Lee, Young-Moo;Nho, Young-Chang;Shin, Jun-Hwa
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.525-530
    • /
    • 2012
  • In this study, silane-crosslinked organic/inorganic composite membranes were prepared by simultaneous irradiation grafting of binary monomer mixtures (styrene and 3-(trimethoxysilyl)propyl methacrylate (TMSPM)) with various compositions onto a poly(ethylene-alt-tetraethylene) (ETFE) film and followed by sol-gel processing and sulfonation to provide a silane-crosslinked structure and a proton conducting ability, respectively. The Fourier transform infrared spectroscopy (FTIR) and thermo gravimetric analysis (TGA) were utilized to confirm the crosslinking of ETFE-g-PS/PTMSPM films. The prepared membranes with similar ion exchange capacity but a different TMSPM content were selected and their membrane properties were compared. The ETFE-g-PSSA/PTMSPM membranes were characterized by water uptake, dimensional stability, and proton conductivity after sulfonation. The membrane electrode assemblies (MEA) of the prepared membranes were fabricated and their single cell performances were measured.

Partial Purification and Quantification of Insulin-like Growth Factor-I from Red Deer Antler (녹용으로부터 Insulin-like Growth Factor-I의 일부정제 및 정량)

  • Gu, Lijuan;Mo, Eun-Kyoung;Fang, ZheMing;Sun, BaiShen;Zhu, XueMei;Sung, Chang-Keun
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1321-1329
    • /
    • 2007
  • Deer antler tissue contains the most rapidly growing bone in the animal kingdom. Thus, it is likely that growing antler tissue is a rich source of local paracrine bone-stimulating factors. Growth factors, at least the insulin-like growth factor (IGF), control the bone-remodelling process. In this study, we tried to isolate and purify IGF-I from fresh antler tissue by the routine isolation and purification of protein. The purification involved ammonium sulfate precipitation, DEAE-Sepharose CL-60 ion-exchange chromatography, CM-Sepharose CL-6B ion-exchange chromatography, and Sephadex G-50 chromatography. Purified fractions from each step were analyzed by high-performance liquid chromatography (HPLC), SDS polyacrylamide gel electrophoresis (SDS-PACE), Dot-blot, and Western-blot methods. Furthermore, the quantification of partially purified IGF-I was calculated by enzyme-linked immunosorbent assays (ELISA) using antibody to human recombinant IGF-1. SDS-PAGE analysis of the final fraction yielded two molecular bands and the signal band was at 12 kDa on the Western-blot film. This purified IGF-I fraction showed a peak at retention time of eight min. The quantity of IGF-I in 20 g deer antler tissue as starting weight was calculated using a standard curve to be 2910 ng/ml, and total IGF-I amount is 0.291 g. The results show that IGF-I, which can be found in deer antler, can be partially purified and quantified by classic protein isolation methods.

Friction and wear characteristics during sliding of ${ZrO}_{2}, {Si}_{3}{N}_{4}$ and SiC with SiC, AISI 4340 and bronze under dry and lubricated condition (세라믹 ${ZrO}_{2}, {Si}_{3}{N}_{4}$ 및 SiC를 SiC, AISI 4340 및 청동으로 윤활 및 건조조건에서 미끄름시험하였을 때의 마찰 및 마멸 거동)

  • 강석춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.404-410
    • /
    • 1989
  • Friction and wear tests were conducted with several different ceramics sliding against ceramic and metal couples with and without lubricant in a two disk type sliding machine. The purpose was to know the tribological properties of ceramics. With very different physical and chemical properties of ceramics compared to metal, the tribological properties of ceramics should be defined in detail. Among them, the wear and friction with same or different couple is very important. Also the lubrication of ceramic is one of the major area to be studied. From this research, SiC, SI$_{3}$N$_{4}$ and ZrO$_{2}$ were slid against SiC, AISI 4340 and bronze under various sliding condition. It was found that the friction and wear of ceramics are strongly dependent on the sliding condition. For unlubricated sliding against SiC, ZrO$_{2}$ shows low wear and friction coefficient over wide lange of load, but with lubricated sliding, SiC shows better performance whatever lubricants were used. Also the effect of lubricant depended upon the material properties of sliding pairs. The general tribological properties of ceramics were not correlated with chattering and noise at low load but it could be reduced or avoided effectively by using lubricants. SiC and Si$_{3}$N$_{4}$ slid against SiC have transition from mild to severe wear at high load but ZrO$_{2}$-SiC and SiC-steel have not. Wear debris formed on the contact area of SiC couples was main cause of the initiation of transition. At high speed, only ZrO$_{2}$ sliding against SiC has transition of wear by low thermal conductivity.