Browse > Article

Texturing Multi-crystalline Silicon for Solar Cell  

Ihm, DaeWoo (Department of Chemical Engineering, Hoseo University)
Lee, Chang Joon (Department of Chemical Engineering, Hoseo University)
Suh, SangHyuk (Graduate School of Global Entrepreneurship, Hoseo University)
Publication Information
Applied Chemistry for Engineering / v.24, no.1, 2013 , pp. 31-37 More about this Journal
Abstract
Lowering surface reflectance of Si wafers by texturization is one of the most important processes for improving the efficiency of Si solar cells. This paper presents the results on the effect of texturing using acidic solution mixtures containing the catalytic agents to moderate etching rates on the surface morphology of mc-Si wafer as well as on the performance parameters of solar cell. It was found that the treatment of contaminated crystalline silicon wafer with $HNO_3-H_2O_2-H_2O$ solution before the texturing helps the removal of organic contaminants due to its oxidizing properties and thereby allows the formation of nucleation centers for texturing. This treatment combined with the use of a catalytic agent such as phosphoric acid improved the effects of the texturing effects. This reduced the reflectance of the surface, thereby increased the short circuit current and the conversion efficiency of the solar cell. Employing this technique, we were able to fabricate mc-Si solar cell of 16.4% conversion efficiency with anti-reflective (AR) coating of silicon nitride film using plasma-enhanced chemical vapor deposition (PECVD) and Si wafers can be texturized in a short time.
Keywords
texturing; multi-crystalline silicon; acid; catalytic agent; solar cell;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. Iencinella, E. Centurioni, R. Rizzoli, and F. Zignani, Sol. Energy Mater. Sol. Cells, 87, 725 (2005).   DOI   ScienceOn
2 G. T. Loacs, N. L. Maluf, and K. E. Petersen, Proc. IEEE, 86 (1998).
3 A. M. Jeffery, Solar cells: An Introduction to Crystalline Photovoltaic Technology, 137, Kluwer Academic Publishers, Dordrecht (1997).
4 S. W. Park and J. Kim, J. Korean Phys. Soc., 43, 426 (2003).
5 Y. Inomata, K. Fukui, and K. Shirasawa, Sol. Energy Mater. Sol. Cells, 48, 237 (1997).   DOI   ScienceOn
6 D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, Sol. Energy, 76, 277 (2004).   DOI   ScienceOn
7 U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, Sol. Energy Mater. Sol. Cells, 91, 285 (2007).   DOI   ScienceOn
8 Y. Nishimotoz, T. Ishihara, and K. Namba, J. Electroch. Soc., 146, 457 (1999).   DOI   ScienceOn
9 K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, Solar Energy Mater. Sol. Cells, 92, 960 (2008).   DOI   ScienceOn
10 H. Y. Park, J. S. Lee, S. W. Kwon, S. W. Yoon, H. J. Lim, and D. H. Kim, J. Kor. Inst, Met. Mater., 46, 835 (2008).
11 S. W. Chon, J. M. Lim, S. H. Choi, Y. M. Hong, and K. M. Cho, J. Kor. Inst. Surt. Eng., 40, 138 (2007).   DOI   ScienceOn
12 J. Y. Kwon, H. E. Song, K. J. Yoon, J. S. Yoo, S. J. Choi, K. M. Han, and N. S. Kim, Proceedings of Fall Meeting, Kor. Solar Energy Soc., 30, 353 (2011).