Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.6.453

Preparation of Forward Osmosis Membranes with Low Internal Concentration Polarization  

Kim, Nowon (Dept. of Environmental Engineering, Dongeui University)
Jung, Boram (Institute of Industrial Technology, Dongeui University)
Publication Information
Membrane Journal / v.24, no.6, 2014 , pp. 453-462 More about this Journal
Abstract
Thin film composite (TFC) polyamide (PA) membranes were prepared on polyester (PET) nonwoven reinforced polysulfone supports for forward osmosis (FO) processes. PSF (polysulfone) supports were prepared via the phase inversion process from PSF casting solutions in dimethyl formamide (DMF) solvents (19 wt%) by using a PET nonwoven (thickness of $100{\mu}m$) as a mechanical reinforcing material for reverse osmosis (RO) membrane. The PSF support from 19 wt% of DMF/PSF casting solution showed sponge-like morphology and asymmetric internal structure. To reduce the internal concentration polarization in FO operation, thin ($20{\mu}m$ of thickness) nonwoven-supported PSF supports were prepared by using PSF/DMF casting solution (9~19 wt%). A desirable support structure with a highly porous sponge-like morphology were achieved from the thin nonwoven-supported PSF layer prepared with 9~12 wt% casting solution. A crosslinked aromatic polyamide layer was fabricated on top of each support to form a TFC PA membrane. The tested sample from 12 wt% of DMF/PSF casting solution presented outstanding FO performance, almost 5.5 times higher water flux (24.3 LMH) with low reverse salt flux (RDF, 1.5 GMH) compared to a thick nonwoven rainforced membrane (4.5 LMH of flux and 3.47 GMH of RSF). By reducing the thickness of the nonwoven and optimizing PSF concentration of casting solution, the morphology of the prepared membranes were changed from a dense structure to a porous sponge structure in the boundary area between nonwoven and PET support layer.
Keywords
forward osmosis; internal concentration polarization; water flux; reverse salt flux; nonwoven;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman, L. A. Hoover, Y. C. Kim, and M. Elimelech, "Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients", Environ. Sci. Technol., 45, 4360 (2011).   DOI   ScienceOn
2 A. Achilli, T. Y. Cath, E. A. Marchand, and A. E. Childress, "The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes", Desalination, 239, 10 (2009).   DOI
3 K. Lutchmiah, E. R. Cornelissen, D. J. H. Harmsen, J. W. Post, K. Roest, K. Lampi, H. Ramaekers, and L. C. Rietveld, "Water recovery from sewage using forward osmosis", Water Sci. Technol., 64, 1443 (2011).   DOI
4 E. Butler, A. Silva, K. Horton, Z. Rom, M. Chwatko, A. Havasov, and J. R. McCutcheon, "Point of use water treatment with forward osmosis for emergency relief", Desalination, 312, 23 (2013).   DOI
5 A. Achilli, T. Y. Cath, and A. E. Childress, "Power generation with pressure retarded osmosis: an experimental and theoretical investigation", J. Membr. Sci., 343, 42 (2009).   DOI   ScienceOn
6 K. L. Lee, R. W. Baker, and H. K. Lonsdale, "Membranes for power generation by pressure-retarded osmosis", J. Membr. Sci., 8, 141 (1981).   DOI   ScienceOn
7 S. Hong, S. Lee, J. H. Kim, J. H. Kim, and Y. Ju, "Evolution of RO Process for Green Future", KIC News, 14, 9 (2011).
8 Y. Xu, X. Peng, C. Y. Tang, Q. S. Fu, and S. Nie, "Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module", J. Membr. Sci., 348, 298 (2010).   DOI   ScienceOn
9 S. Zhao, L. Zou, C. Y. Tang, and D. Mulcahy, "Recent developments in forward osmosis: opportunities and challenges", J. Membr. Sci., 396, 1 (2012).   DOI
10 T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: principles, applications, and recent developments", J. Membr. Sci., 281, 70 (2006).   DOI   ScienceOn
11 D. Xiao, C. Y. Tang, J. Zhang, W. C. L. Lay, R. Wang, and A. G. Fane, Modeling salt accumulation in osmotic membrane bioreactor simplications for FO membrane selection and system operation, J. Membr. Sci., 366, 314 (2011).   DOI
12 D. Stillman, L. Krupp, and Y.-H. La, "Mesh-reinforced thin film composite membranes for forward osmosis applications: The structure-performance relationship", J. Membr. Sci., 468, 308 (2014).   DOI
13 N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman, and M. Elimelech, "High performance thin-film composite forward osmosis membrane", Environ. Sci. Technol., 44, 3812 (2010).   DOI   ScienceOn
14 T. Matsuura, "Progress in membrane science and technology for seawater desalination-a review", Desalination, 134, 47 (2001).   DOI   ScienceOn
15 H. Ahn, J. Kim, and Y. Kwon, "Preparation of Cellulose Acetate Membrane and Its Evaluation as a Forward Osmosis Membrane", Membrane Journal, 24, 136 (2014).   DOI   ScienceOn
16 J. Wei, C. Qiu, C. Y. Tang, R. Wang, and A. G. Fane, "Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes", J. Membr. Sci., 372, 292 (2011).   DOI   ScienceOn
17 B. Jung, J. H. Kim, B. S. Kim, Y. I. Park, D. H. Song, and I. C. Kim, "Effect of Support Membrane Property on Performance of Forward Osmosis Membrane", Membrane Journal, 20, 235 (2010).
18 S. H. Ahn, I. C. Kim, D. H. Song, J. Jegal, Y. Kwon, and H. W. Rhee, "Pore Structure and Separation Properties of Thin Film Composite Forward Osmosis Membrane with Different Support Structures", Membrane Journal, 23, 251 (2013).
19 M. Qtaishat, M. Khayet, and T. Matsuura, "Novel porous composite hydrophobic/hydrophilic polysulfone membranes for desalination by direct contact membrane distillation", J. Membr. Sci., 341, 139 (2009).   DOI   ScienceOn
20 J. McCutcheon and M. Elimelech, "Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes", J. Membr. Sci., 318, 458 (2008).   DOI   ScienceOn