• Title/Summary/Keyword: Film layers

Search Result 1,385, Processing Time 0.037 seconds

A Study on the Properties of MgF2 Antireflection Film for Solar Cells

  • Yang, Hyeon-Hun;Park, Gye-Choon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.33-36
    • /
    • 2010
  • $MgF_2$ is a current material used for optical applications in the ultraviolet and deep ultraviolet range. Process variables for manufacturing $MgF_2$ thin film were established in order to clarify the optimum conditions for the growth of the thin film, dependant upon the process conditions, and then by changing a number of the vapor deposition conditions, substrate temperatures, and heat treatment conditions, the structural and optical characteristics were measured. Then, optimum process variables were thus derived. Nevertheless, modern applications still require improvement in the optical and structural quality of the deposited layers. In the present work, in order to understand the composition and microstructure of $MgF_2$, single layers grown on a slide glass substrate using an Electron beam Evaporator (KV-660), were analyzed and compared. The surface substrate temperature, having an effect on the quality of the thin film, was changed from $200^{\circ}C$ to $350^{\circ}C$ at intervals of $50^{\circ}C$. The heat treatment temperature, which also has an effect on the thin film, was changed from $200^{\circ}C$ to $400^{\circ}C$ at intervals of $50^{\circ}C$. The physical properties of the thin film were investigated at various fabrication conditions, such as the substrate temperature, the heat treatment temperature, and the heat treatment time, by X-ray diffraction, and field emission-scanning electron microscopy.

Measurement of Flexural Modulus of Lamination Layers on Flexible Substrates (유연 기판 위 적층 필름의 굽힘 탄성계수 측정)

  • Lee, Tae-Ik;Kim, Cheolgyu;Kim, Min Sung;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.63-67
    • /
    • 2016
  • In this paper, we present an indirect method of elastic modulus measurement for various lamination layers formed on polymer-based compliant substrates. Although the elastic modulus of every component is crucial for mechanically reliable microelectronic devices, it is difficult to accurately measure the film properties because the lamination layers are hardly detached from the substrate. In order to resolve the problem, 3-point bending test is conducted with a film-substrate specimen and area transformation rule is applied to the cross-sectional area of the film region. With known substrate modulus, a modulus ratio between the film and the substrate is calculated using bending stiffness of the multilayered specimen obtained from the 3-point bending test. This method is verified using electroplated copper specimens with two types of film-substrate structure; double-sided film and single sided film. Also, common dielectric layers, prepreg (PPG) and dry film solder resist (DF SR), are measured with the double-sided specimen type. The results of copper (110.3 GPa), PPG (22.3 GPa), DF SR (5.0 GPa) were measured with high precision.

Factors Influencing the Camber of Cofired Resistor/Low Temperature Cofired Ceramics (LTCC) Bi-Layers (동시 소성된 저항/저온 동시 소성 세라믹(LTCC) 이중층의 캠버에 영향을 미치는 인자)

  • Ok Yeon Hong;Seok-Hong Min
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.537-549
    • /
    • 2023
  • The sintering shrinkage behaviors of low temperature cofired ceramics (LTCC) and resistors were compared using commercial LTCC and thick-film resistor pastes, and factors influencing the camber of cofired resistor/LTCC bi-layers were also investigated. The onset of sintering shrinkage of the resistor occurred earlier than that of LTCC in all resistors, but the end of sintering shrinkage of the resistor occurred earlier or later than that of LTCC depending on the composition of the resistor. The sintering shrinkage end temperature and the sintering shrinkage temperature interval of the resistor increased as the RuO2/glass volume ratio of the resistor increased. The camber of cofired resistor/LTCC bi-layers was obtained using three different methods, all of which showed nearly identical trends. The camber of cofired resistor/LTCC bi-layers was not affected by either the difference in linear shrinkage strain after sintering between LTCC and resistors or the similarity of sintering shrinkage temperature ranges of LTCC and resistors. However, it was strongly affected by the RuO2/glass volume ratio of the resistor. The content of Ag and Pd had no effect on the sintering shrinkage end temperature or sintering shrinkage temperature interval of the resistor, or on the camber of cofired resistor/LTCC bi-layers.

A Study on Properties of $MgF_2$ antireflection film for solar cell (태양전지용 $MgF_2$ 반사방지막 특성연구)

  • Park, Gye-Choon;Yang, Hyeon-Hun;Baek, Su-Ung;Na, Kil-Ju;So, Soon-Youl;Lee, Jin;Chung, Hae-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.378-380
    • /
    • 2009
  • $MgF_2$ is a current material for the optical applications in the UV and deep UV range. Process variables for manufacturing the $MgF_2$ thin film were established in order to clarify optimum conditions for growth of the thin film depending upon process conditions, and then by changing a number of vapor deposition conditions and substrate temperature, Annealing conditions variously, structural and Optical characteristics were measured. Thereby, optimum process variables were derived. Nevertheless, modern applications still require improvement of the optical and structural quality of the deposited layers. In the present work, the composition and microstructure of $MgF_2$ single layers grown on slide glass substrate by Electro beam Evaporator(KV-660) processes, were analyzed and compared. The surface Substrate temperature having an effect on the quality of the thin film was changed from $200[^{\circ}C]$ to $350[^{\circ}C]$ at intervals of $50[^{\circ}C]$. and annealing temperature an effect on the thin film was changed from $200[^{\circ}C]$ to $400[^{\circ}C]$ at intervals of $50[^{\circ}C]$. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM.

  • PDF

The Effect of Polymer Thin Film for Sealing Buffer on the Characteristics of OLEO Device (OLED 소자의 특성에 미치는 밀봉 버퍼용 고분자박막의 영향)

  • Lee, Bong-Sub;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.102-108
    • /
    • 2008
  • In this paper, the LiF and polymer thin film as passivation layer have been evaporated on green OLED devices. HDPE, polyacenaphthylene, polytetrafluoroethylene, poly(2,6-dimethyl-1,4-pheneylene oxide), poly sulfone and poly(dimer-acid-co-alkyl poly-amine) have been used as polymer materials. The optical transmittance of evaporated polymer thin film was very good as an above 90% in visible range. The morphology of polymer thin film was measured by AFM. As a result of the measurement average roughness($R_a$) value of the polysulfone was very low as 2.2 nm. The green OLED devices with a structure of ITO/HIL/HTL/EML/Buffer/Al in series of various passivation films were fabricated and analyzed. It was observed that an OLED device with LiF as first passivation film has shown the good electrical and optical property, and all kind of polymer films did not influence on the I-V-L characteristics and the life time of OLED devices. Therefore, we found that polymer layer played a key role as a buffer layer between the inorganic passivation layers to relieve the stress of the inorganic layers.

Improvement of source-drain contact properties of organic thin-film transistors by metal oxide and molybdenum double layer

  • Kim, Keon-Soo;Kim, Dong-Woo;Kim, Doo-Hyun;Kim, Hyung-Jin;Lee, Dong-Hyuck;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.270-271
    • /
    • 2008
  • The contact resistance between organic semiconductor and source-drain electrode in Bottom Contact Organic Thin-Film Transistors (BCOTFTs) can be effectively reduced by metal oxide/molybdenum double layer structure; metal oxide layers including nickel oxide (NiOx/Mo) and moly oxide(MoOx) under molybdenum work as a high performance carrier injection layer. Step profiles of source-drain electrode can be easily achieved by simultaneous etching of the double layers using the difference etching rate between metal oxides and metal layers.

  • PDF

Design of Optical Thin Film Systems Reducing the Variation of Polarization State (반사에 의한 편광상태의 변화를 최소화시키는 광학박막계의 설계)

  • 한성홍;김석원
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 1996
  • At oblique angles of incidence, polarization properties of metal layers and dielectric layers are investgated and we designed the optical thin film systems reducing the variation of the polarization state, for target reflectances 0.5 and 0.6 at $45^{\circ}$ incidence in broad band wavelength regions $(\DELTA\lambda/\lambda= 10%)$ using two dielectric matching layers and one metal layer.

  • PDF

Molecular beam epitaxial growth and characterization of Sb .delta.-doped Si layers using substrate temperature modulation technique (저온 변조 성장 기법을 이용하여 Sb가 ${\delta}$ 도핑된 다층 구조의 Si 분자선 박막 성장과 특성 분석)

  • Le, Chan ho
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.142-148
    • /
    • 1995
  • Sb ${\delta}$-doped Si layers were grown by Si MBE (Molecular Beam Epitaxy) system using substrate temperature modulation technique. The Si substrate temperatures were modulated between 350$^{\circ}C$ and 600$^{\circ}C$. The doping profile was as narrow as 41$\AA$ and the doping concentration of up to 3.5${\times}10^{20}cm^{3}$ was obtained. The film quality was as good as bulk material as verified by RHEED (Reflected High Energy Electron Diffraction), SRP (Spreading Resistance Profiling) and Hall measurement. Since the film quality is not degraded after the growth a Sb ${\delta}$-doped Si layer, the ${\delta}$-doped layers can be repeated as many times as we want. The doping technique is useful for many Si devices including small scale devices and those which utilize quantum mechanical effects.

  • PDF

Low Emissivity Property of Amorphous Oxide Multilayer (SIZO/Ag/SIZO) Structure

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.13-15
    • /
    • 2017
  • Low emissivity glass for high transparency in the visible range and low emissivity in the IR (infrared) range was fabricated and investigated. The multilayers were have been fabricated, and consisted of two outer oxide layers and a middle layer of Ag as a metal layer. Oxide layers were formed by rf sputtering and metal layers were formed using by an evaporator at room temperature. SiInZnO (SIZO) film was used as an oxide layer. The OMO (oxide-metaloxide) structures of SIZO/Ag/SIZO were analyzed by using transmittance, AFM (atomic force microscopye), and XRD (X-ray diffraction). The OMO multilayer structure was designed to investigate the effect of Ag layer thickness on the optical property of the OMO structure.

Fabrication of Organic-Inorganic Nanohybrid Semiconductors for Flexible Electronic Device

  • Han, Gyu-Seok;Jeong, Hui-Chan;Gwon, Deok-Hyeon;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.114-114
    • /
    • 2011
  • We report a high-performance and air-stable flexible and invisible semiconductor which can be substitute for the n-type organic semiconductors. N-type organic-inorganic nanohybrid superlattices were developed for active semiconducting channel layers of thin film transistors at low temperature of $150^{\circ}C$ by using molecular layer deposition with atomic layer deposition. In these nanohybrid superlattices, self-assembled organic layers (SAOLs) offer structural flexibility, whereas ZnO inorganic layers provide the potential for semiconducting properties, and thermal and mechanical stability. The prepared SAOLs-ZnO nanohybrid thin films exhibited good flexibility, transparent in the visible range, and excellent field effect mobility (> 7cm2/$V{\cdot}s$) under low voltage operation (from -1 to 3V). The nanohybrid semiconductor is also compatible with pentacene in p-n junction diodes.

  • PDF