• Title/Summary/Keyword: Film Sensor

Search Result 1,242, Processing Time 0.029 seconds

Measurement Feasibility Assessment of Coating Film Thickness using Dual Sensor (이중센서를 이용한 코팅막 두께 측정 가능성 평가)

  • 김주현;김성렬;김정욱;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.78-81
    • /
    • 2004
  • A technical performance of the coating depends greatly on the thickness of painting film or coating film. Therefore the confirmed report of the technique to measure accurately is essential to the coating film thickness for the assessment about a coating quality performance. In this paper, two gap sensors - eddy current gap sensor and capacitance gap sensor - which has a different operating principle were used to measure the thickness of a nonmagnetic substance coating film such as paint, enamel or ceramic that was coated on the metallic material. A capacitance gap sensor was used to measure the distance between the sensor head and a coating film and an eddy current gap sensor to measure the distance between the sensor head and a base metal. Then the thickness of a coating film was obtained by the difference of two measurement value. At this result, the suggested dual sensor can measure an arbitrary film thickness to be coated on a base metal as the measurement value of coating thickness exists accurately within the 2% error.

  • PDF

A study on the optimum configuration of sensor part for measurement of pulse using piezo film sensor in brachial artery (Piezo Film Sensor를 이용하여 상완 동맥에서 맥박 측정을 위한 센서부 최적 구조에 관한 연구)

  • Jo, Sung-Hyun;Kim, Sheen-Ja;Lee, Young-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.441-443
    • /
    • 2009
  • Piezo Film Sensor를 이용하여 팔뚝의 상완 동맥에서 맥박 측정을 위한 센서부 최적 구조에 관한 연구를 하였다. 탈부착이 쉬운 팔뚝형 밴드 형태에 Piezo Film Sensor를 삽입하여 생체 신호를 측정 하였다. 센서부의 최적 구조를 알기 위해서 센서패드 구조물의 형태에서 매질 및 두께를 변화시켜 가면서 생체 신호의 크기를 비교하였다.

  • PDF

Effect of P(VDF/TrFE) Film Thickness on the Characteristics of Pyroelectric Passive Infrared Ray Sensor for Human Body Detection (P(VDF/TrFE) 필름의 두께에 따른 인체 감지형 초전형 PIR 적외선 센서의 특성)

  • Kwon, Sung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.114-117
    • /
    • 2011
  • A thick 25 ${\mu}m$ thickness poled P(VDF/TrFE) film pyroelectric infrared ray sensor has been fabricated and then thin 1.6 ${\mu}m$ thickness P(VDF/TrFE) film pyroelectric infrared ray sensor has been fabricated also. These thick and thin P(VDF/TrFE) film pyroelectric infrared ray sensor was mounted in TO-5 housing to detect infrared light of 5.5 ~ 14 ${\mu}m$ wavelength for human body detecting with each other. The noise output voltage of the thick P(VDF/TrFE) film pyroelectric infrared ray sensor were 380 mV and NEP(noise equivalent power) is $3.95{\times}10^{-7}$ W which is the similar value with the commercial pyroelectric infrared ray sensor using ceramic materials as a sensing material. The NEP and specific detectivity $D^*$ of the thin P(VDF/TrFE) film pyroelectric infrared ray sensor were $2.13{\times}10^{-8}$ W and $9.37{\times}106$ cm/W under emission energy of 13 ${\mu}W/cm^2$ respectively. These result caused by lower thermal diffusion coefficient of a thin 1.6 ${\mu}m$ thickness PVDF/TrFE film than the thick 25 ${\mu}m$ thickness poled P(VDF/TrFE) film pyroelectric infrared ray sensor.

Development of Plastic Film Type Water Level Sensor for High Temperature (고온용 플라스틱 필름 수위 센서 개발)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.124-128
    • /
    • 2019
  • In this paper, a high temperature plastic film type water level sensor was developed. The high temperature film type water level sensor was manufactured by attaching a copper film to a polyimide film which can be used for a long time at 250℃, by laminating process and patterning the electrode by etching process. For the performance evaluation of the developed film type water level sensor, the temperature dependence of the capacitance was measured, and the deformation was examined after standing for 8 hours in 150℃ air. The developed film type water level sensor can be used at up to 150℃, and can be applied to electric ports and steam devices.

A Study on the Measurement of Oil-Film Pressure in Engine Connecting Rod Bearing and Piston Pin-Boss by Thin-Film Sensor

  • Mihara, Yuji;Someya, Tsuneo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.409-410
    • /
    • 2002
  • In order to measure the oil-film pressure in sliding surface of machinery, we have developed a piezo-resistive type thin-film pressure sensor. To reduce the measurement error due to temperature and strain, the constituent of the pressure sensitive alloy was optimized and a new sensor shape was devised. In this study, we present the measurement results of the oil-film pressure distribution in engine connecting rod big-end bearing and piston pin- bosses with 3 different pin-boss shapes using the newly developed thin-film pressure sensor.

  • PDF

The Detection Characterization of NOX Gas Using the MWCNT/ZnO Composite Film Gas Sensors by Heat Treatment (열처리에 따른 MWCNT/ZnO 복합체 필름 가스센서의 NOX 가스 검출 특성)

  • Kim, Hyun-Soo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.521-526
    • /
    • 2018
  • In particular, gas sensors require characteristics such as high speed, sensitivity, and selectivity. In this study, we fabricated a $NO_X$ gas sensor by using a multi-walled carbon nanotube (MWCNT)/zinc oxide (ZnO) composite film. The fabricated MWCNT/ZnO gas sensor was then treated by a $450^{\circ}C$ temperature process to increase its detection sensitivity for NOx gas. We compared the detection characteristics of a ZnO film gas sensor, MWCNT film gas sensor, and the MWCNT/ZnO composited film gas sensor with and without the heat-treatment process. The fabricated gas sensors were used to detect $NO_X$ gas at different concentrations. The gas sensor absorbed $NO_X$ gas molecules, exhibiting increased sensitivity. The sensitivity of the gas sensor was increased by increasing the gas concentration. Additionally, while changing the temperature inside the chamber for the MWCNT/ZnO composite film gas sensor, we obtained its sensitivity for detecting $NO_X$ gas. Compared with ZnO, the MWCNT film gas sensor is excellent for detecting $NO_X$ gas. From the experimental results, we confirmed the enhanced gas sensor sensing mechanism. The increased effect by electronic interaction between the MWCNT and ZnO films contributes to the improved sensor performance.

Polyimide Film-coated Side-polished Optical Fiber Humidity Sensor (폴리이미드가 코팅된 측면 연마 광섬유를 이용한 습도 센서)

  • Kwang Taek Kim;Jae Chang Yang
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.51-54
    • /
    • 2023
  • We investigated a humidity sensor based on a polyimide-coated side-polished optical fiber. The polyimide film absorbed moisture, causing the resonant wavelength of the sensor to shift to a longer wavelength owing to the changes in the optical properties of the film. The experimental results showed that the resonant wavelength of the device shifted by 17-18 nm when relative humidity changed from 30% to 90%.

Monitoring of Low-velocity Impact Damage Initiation of Gr/Ep Panel Using Piezoelectric Thin Film sensor (압전필름센서를 이용한 복합재 평판의 저속충격 손상개시 모니터링)

  • 이관호;박찬익;김인걸;이영신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.174-178
    • /
    • 2001
  • The piezoelectric thin film sensor can be used to interpret variations in structural and material properties, e.g. for structural integrity monitoring and assessment. To illustrate one of this potential benefit, PVDF film sensors are used for monitoring impact damage initiation in Gr/Ep composite panel. Both PVDF film sensors and strain gages are surface mounted to the Gr/Ep specimens. A series of impact test at various impact energy by changing impact mass and height is performed on the instrumented drop weight impact tester. The sensor responses are carefully examined to predict the onset of impact damage such as matrix cracking, delamination, and fiber breakage, etc. Test results show that the particular waveforms of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. As expected, the PVDF film sensor is found to be more sensitive to impact damage initiation event than the strain gage.

  • PDF

A Fluorescent Sensor Film for Detecting pH of Acidic Solutions (산성 용액의 pH를 감지할 수 있는 형광 센서막)

  • Min, Jae Young;Kim, Hyung Jin
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.2
    • /
    • pp.74-78
    • /
    • 2020
  • A push-pull conjugated dye (DCMP) was covalently immobilized on a silanized glass surface to produce a high sensitivity pH sensor film for operating in the acidic region. A pH-sensitive sensor film was prepared by photo-initiating copolymerization of a modified DCMP (DCMA), 2-hydroxyethyl methacrylate (HEMA) and triethylene glycol dimethacrylate on the silanized glass surface. The absorbance of the sensor film increased with increasing pH between pH 2.0 and 5.0, and the fluorescence intensity of the film also increased about 50 times with increasing pH in the same pH range. The sensor film was reversible and reproducible under acidic conditions. The sensor film showed a relatively short response time between 20-50 seconds and high selectivity for proton in the presence of various metal ions.

Temperature-Dependent Characteristics of Carbon Nanotubes-Film-Based Electrochemical Sensor (CNT 필름 전기화학 센서의 온도 의존 특성에 관한 연구)

  • Noh, Jaeha;Ahn, Hyung Soo;An, Sangsu;Lee, Changhan;Lee, Sangtae;Lee, Moonjin;Seo, Dongmin;Chang, Jiho
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.163-167
    • /
    • 2022
  • In this study, we investigated a carbon nanotube (CNT) film sensor to detect hazardous and noxious substances distributed in seawater. The response change of the sensor was studied according to environmental temperature, and its temperature coefficient of resistance (TCR, α) was measured. The temperature of the CNT film (~50 ㎛) was in the range of 20-50 ℃, and αCNT was calculated to be -0.0011 %/ ℃. We experimentally confirmed that the CNT film had a smaller TCR value than that of the conventional sensor. Therefore, we investigated the response change of the CNT sensor according to temperature. The CNT sensor showed a relatively small error of approximately 2.3 % up to 30 ℃, which is within the temperature range of the seawater of the Korean Peninsula. However, when the temperature exceeded 40 ℃, the error in the CNT sensor increased by more than 5.2 %. We fabricated a metal oxide (ITO, indium-tin-oxide) film and compared its performance with that of the CNT sensor. The ITO sensor showed an error of >12.5 % at 30 ℃, indicating that in terms of the stability of the sensor to temperature, the CNT film sensor has superior performance.