• Title/Summary/Keyword: Film Condensation

Search Result 163, Processing Time 0.039 seconds

Evaluation of Oxidation System for Metal Oxide Thin Film (금속 산화물 박막 제작을 위한 산화 시스템의 평가)

  • 임중관;김종서;박용필
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.590-593
    • /
    • 2003
  • Ozone is a strong and useful oxidizing gas for the fabrication of oxide thin films. In order to obtain high quality oxide thin films, higher ozone concentration is necessary. In this paper an ozone condensation system was evaluated from the viewpoint of an ozone supplier for oxide thin film growth. Crone was condensed by an adsorption method and the ozone concentration reached 8.5 mol% in 2.5 h after the beginning of the ozone condensation process, indicating high effectiveness of the condensation process. Ozone was continuously desorbed from the silica gel by the negative pressure. We found the decomposition in the ozone concentration negligible if the condensed ozone is transferred from the ozone condensation system to the film growth chamber within a few minutes.

  • PDF

Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes

  • Lee, Chang Won;Yoo, Jin-Seong;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2488-2498
    • /
    • 2021
  • The wall film-wise condensation plays an important role in the heat transfer processes of heat exchangers, refrigerators, and air conditioner. In the field of nuclear engineering, steam condensation is often utilized in safety systems to remove the core decay heat under both transient and accident conditions. In particular, passive containment cooling system (PCCS), are designed to ensure containment safety under severe accident conditions. A computational fluid dynamics (CFD) scale analysis has been conducted to calculate the heat transfer rate of the PCCS. However, despite the increase in computing power, there are challenges in the long-term transient simulation of containment using CFD scale codes. In this study, a heat structure coupling between the CFD and system analysis codes was performed to efficiently analyze PCCS. In addition, the component unstructured program for interfacial dynamics (CUPID) was improved to analyze the condensation behavior of ternary gas mixtures. Thereafter, the condensation heat transfer on the primary side was calculated using the improved CUPID and CFD code, whereas that on the secondary side was simulated using MARS. Both the coupled codes were validated against the CONAN facility database. Finally, conjugate heat transfer simulations with wall condensation in the presence of non-condensable gases were appropriately performed.

The Effect of Heat Conduction resistance on Laminar Film Condensation along a Horizontal Plate (수평평판의 막응축에서 전도 열저항의 영향)

  • Lee, Euk-Soo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.183-188
    • /
    • 2005
  • The effect of heat conduction resistance on laminar film condensation of the pure saturated vapor in forced flow over a flat plate has been investigated as boundary layer solutions. A efficient numerical methods for water are proposed for its solution. The momentum and energy balance equations are reduced to a nonlinear system of ordinary differential equations with four parameters: the Prandtl number, Pr, Modified Jacob number, $Ja^{\ast}/Pr$, defined by an overall temperature difference, a property ratio $\sqrt{P_l{\mu}_l/P_v{\mu}_v}$ and the conjugate parameter ${\zeta}$. The similarity and simplified solutions obtained reveal the effects of the conjugate parameter.

  • PDF

Similarity and Approximate Solutions of Laminar Film Condensation on a Flat Plate

  • Lee, Sung-Hong;Lee, Euk-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1339-1345
    • /
    • 2001
  • Laminar film condensation of a saturated pure vapor in forced flow over a flat plate is analyzed as boundary layer solutions. Similarity solutions for some real fluids are presented as a function of modified Jakob number (C$\_$pι/ ΔΤ/Prh$\_$fg/) with property ratio (No Abstract.see full/text) and Pγ as parameters and compared with approximate solutions which were obtained from energy and momentum equations without convection and inertia terms in liquid flow. Approximate solutions agree well with the similarity solutions when the values of modified Jakob number are less then 0.1 near 1 atmospheric pressure.

  • PDF

The Effect of Pressure on Laminar Film Condensation along a Horizontal Plate (수평평판의 층류 막응축에서 압력의 영향)

  • Lee, Euk-Soo;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.945-953
    • /
    • 2008
  • Laminar film condensation of saturated vapor in forced flow over a flat plate is analysed. The problem is formulated as exact boundary-layer solution and integral approximate solution. From numerical solutions of the governing equations, it is found that the energy transfer by convection and the effect of inertia term in the momentum equation in negligibly small for low pressure but quite important for high pressure. The condensate rate, liquid-vapor interfacial shear stress and local heat transfer are strongly dependent on the reduced pressure $P_r$ and the modified Jacob number Ja/Pr.

Conjugate Heat Transfer of Laminar Film Condensation Along a Horizontal Plate (강제대류 층류 막응축에서 복합열전달)

  • Lee Euk-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.238-245
    • /
    • 2006
  • This paper proposes appropriate conjugate parameters and dimensionless temperatures to analysis the conjugate problem of heat conduction in solid wall coupled with laminar film condensation flow adjacent to horizontal flat plate. An efficient methods for some fluids are proposed for its solution. The momentum and energy balance equations are reduced to a nonlinear system of ordinary differential equations with four parameters: the Prandtl number, Pr, Modified Jacob number, $Ja^*/Pr$, defined by an overall temperature difference, a property ratio $\sqrt{\rho_l{\mu}_l/{\rho_v{\mu}_v}$ and the conjugate parameter $\zeta$. The obtained similarity solution reveals the effect of the conjugate parameter, and the results are compared with the simplified solution. The variations of the heat transfer rates as well as the interface temperature and frictions along the plate are shown explicitly.

Condensation and Baking Effects of Polymer Gate Insulator for Organic Thin Film Transistor

  • Kang, S.I.;Park, J.H.;Jang, S.P.;Choi, Jong-S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1046-1048
    • /
    • 2004
  • Performances of organic thin film transistors (OTFTs) can be detrimentally affected by the state of the gate dielectric. Because of the bad stability of polymers, OTFTs with polymer gate dielectrics often provide abnormal characteristics. In this study, we report the condensation effect of the polymer gate dielectric layer. For the observations of the effect of the condensation, the spin-coated polymer layers with various deposition conditions were fabricated and left under low vacuum condition for several days. It is observed that the thickness of polymer layer and the electrical characteristic of OTFTs vary with the condensation time.

  • PDF

Assessment of RELAPS/MOD3 with Condensation Experiment for Pure Steam Condensation in a Vercal Tube

  • Kim, Sang-Jae;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.559-564
    • /
    • 1998
  • The film condensation models in RELAP5/MOD3.1 and RELAP5/WOD3.2 are assessed with the data experiment performed in the scaled down condensation experimental facility with a single vertical tube inner diameter 46 mm in the range of pressure 0.1∼7.5 Mpa for the PSCS(Passive Secondary Condenser System) Both MOD3.1 and MOD3.2 don't shows any reliable predictions the experimental data The RELAP5/MOD3.1 overpredicts the heat transfer coefficients experiment, whereas the RELAP5/MOD3.2 underpredicts those data it is recommended that the film condonation model in RELAP5/MOD3.2 should be modified to hue a larger heat transfer coefficient than those the present model to give the reliable predictions.

  • PDF

Assessment of Two Wall Film Condensation Models of RELAP5/MOD3.2 in the Presence of Noncondensable Gas in a Vertical Tube

  • Park, Hyun-Sik;No, Hee-Cheon;Bang, Young-Seok
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.465-475
    • /
    • 1999
  • The objective of the present work is to assess the analysis capability of two wall film condensation models, the default and the alternative models, of RELAP5/MOD3.2 on condensation experiments in the presence of noncondensable gas in a vertical tube of PCCS of CP-1300. In the calculation of a base case the default model of RELAP5/MOD3.2 under-predicts the heat transfer coefficients, and Its alternative model over-predicts them throughout the condensing tube, Also, both models over-predict the void fractions. The nodalization study shows that the variation of the node number does not change both modeling results of RELAP5/MOD3.2 Sensitivity study for varying input parameters shows that the inlet steam-air mixture flow rate, the inlet air mass fraction, and the inlet saturated steam temperature give significant changes of their heat transfer coefficients Run statistics show that the grind time of the default model is always higher than that of the alternative model by about 23%.

  • PDF

Dropwise condensation induced on chromium ion implanted aluminum surface

  • Kim, Kiwook;Lee, Youngjin;Jeong, Ji Hwan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.84-94
    • /
    • 2019
  • Aluminum substrates are irradiated with chromium ions and the steam condensation heat transfer performance on these surfaces is examined. Filmwise condensation is induced on the surface of aluminum specimens irradiated with chromium ion dose of less than $10^{16}ions/cm^2$ while dropwise condensation occurs on the specimens irradiated with chromium ion dose of $5{\times}10^{16}ions/cm^2$ in the range of ion energy from 70 to 100 keV. The heat transfer coefficient of the surfaces on which dropwise condensation occurs appeared to be approximately twice as much as the prediction by Nusselt's film theory. In a durability test, dropwise condensation lasts over six months and the heat transfer coefficient is also maintained.