• Title/Summary/Keyword: Filling time

Search Result 793, Processing Time 0.03 seconds

Suggestion of a Model for Filling Coefficient of Hydraulic Cylinder in Concrete Pump (콘크리트펌프 유압실린더의 충진율 모델 제안)

  • Park, Chan-Kyu;Jang, Kyong-Pil;Jeong, Jae-Hong;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.195-202
    • /
    • 2016
  • In general, piston pumps are frequently used for concrete pumping. Filling coefficient signifies the ratio volume of a hydraulic cylinder to volume of concrete inside the cylinder. Therefore, it may be considered as a parameter directly affecting the flow rate and efficiency for concrete pumping. However, accurate analyses on this aspect have not yet been performed. In this paper, the data measured from horizontal pipeline pumping tests for 350m and 548m in length was analyzed to identify the relationships of rheological properties of concrete and stroke time with the filling coefficient. In addition, an equation allowing prediction of the filling coefficient from rheological properties of concrete and stroke time has been suggested.

A Numerical Study of Sandwich Injection Mold Filling Process (샌드위치 사출성형의 충전 공정 해석에 대한 수치모사 연구)

  • 송효준;이승종
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.159-167
    • /
    • 1999
  • Sandwich injection molding is one of the remarkable polymer processes recently developed from conventional injection molding. But it is almost impossible to do theoretical investigation that we've researched it through numerical simulation. In this paper, numerical simulation on the study of sandwich injection molding is based on Finite Element Method and FAN/Control Volume method. In addition to conventional filling parameter that can confirm skin polymer melt front, new filling parameters have been introduced to confirm core polymer melt front advancement. These filling parameters are defined in each layer which is divided to solve temperature field along the thickness direction. One can notice different filling patterns resulted from the variation of material properties such as viscosities and power-law indexes, and processing conditions such as switch-over times and wall temperatures. It gives us a better understanding of the sandwich injection molding process. And we can recognize that it's the core polymer spatial distribution after the completion of filling that is the most important key point to use this process for industrial molding process.

  • PDF

Effectiveness and safety of rotary and reciprocating kinematics for retreatment of curved root canals: a systematic review of in vitro studies

  • Lucas Pinho Simoes;Alexandre Henrique dos Reis-Prado;Carlos Roberto Emerenciano Bueno;Ana Cecília Diniz Viana ;Marco Antonio Hungaro Duarte ;Luciano Tavares Angelo Cintra;Cleidiel Aparecido Araujo Lemos;Francine Benetti
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.2
    • /
    • pp.22.1-22.18
    • /
    • 2022
  • Objectives: This systematic review (register-osf.io/wg7ba) compared the efficacy and safety of rotary and reciprocating kinematics in the removal of filling material from curved root canals. Materials and Methods: Only in vitro studies evaluating both kinematics during retreatment were included. A systematic search (PubMed/MEDLINE, Scopus, and other databases, until January 2021), data extraction, and risk of bias analysis (Joanna Briggs Institute checklist) were performed. Efficacy in filling removal was the primary outcome. Results: The search resulted in 2,795 studies, of which 15 were included. Efficacy was measured in terms of the remaining filling material and the time required for this. Nine studies evaluated filling material removal, of which 7 found no significant differences between rotary and reciprocating kinematics. Regarding the time for filling removal, 5 studies showed no difference between both kinematics, 2 studies showed faster results with rotary systems, and other 2 showed the opposite. No significant differences were found in apical transportation, centering ability, instrument failure, dentin removed and extruded debris. A low risk of bias was observed. Conclusions: This review suggests that the choice of rotary or reciprocating kinematics does not influence the efficacy of filling removal from curved root canals. Further studies are needed to compare the kinematics safety in curved root canals.

A study on the Additive Decomposition Generated during the Via-Filling Process (Via-Filling 공정시 발생하는 첨가제 분해에 관한 연구)

  • Lee, Min Hyeong;Cho, Jin Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.153-157
    • /
    • 2013
  • The defect like the void or seam is frequently generated in the PCB (Printed Circuit Board) Via-Filling plating inside via hole. The organic additives including the accelerating agent, inhibitor, leveler, and etc. are needed for the copper Via-Filling plating without this defect for the plating bath. However, the decomposition of the organic additive reduces the lifetime of the plating bath during the plating process, or it becomes the factor reducing the reliability of the Via-Filling. In this paper, the interaction of each organic additives and the decomposition of additive were discussed. As to the accelerating agent, the bis (3-sulfopropyl) disulfide (SPS) and leveler the Janus Green B (JGB) and inhibitor used the polyethlylene glycol 8000 (PEG). The research on the interaction of the organic additives and decomposition implemented in the galvanostat method. The additive decomposition time was confirmed in the plating process from 0 Ah/l (AmpereHour/ liter) to 100 Ah/l with the potential change.

An Experimental Study on the Effect of the "Heliosit" Composite Resin to Pulp Tissue (Heliosit복합레진이 치수조직에 미치는 영향에 관한 실험적 연구)

  • Maing, Hyung-Yul;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.10 no.1
    • /
    • pp.93-101
    • /
    • 1984
  • The experimental study was made to investigate the effect of the "Heliosit" composite resin on the dental pulp. The 36 class V cavities were prepared on the healthy permanent teeth of 3 days, and were divided into 5 groups and filled with the experimental filling materials. Control group: Zinc Oxide-Eugenol cement filling Experimental groups: Group 1: Dentin Adhesit application & Heliosit filling with or without dycal base Group 2: Heliosit filling with or without dycal base Group 3: Durafill filling with dycal base Group 4: Hipol filling with dycal base Animals were sacrificed after 1 weeks, 2 weeks, and 4 weeks following operation. The teeth were decalcified, sectioned and stained with hematoxylin and eosin. The results obtained form this study were as follows: 1. All experimental group showed slight pulp response. 2. Dentin Adhesit group showed minimal pulp response in both dycal bases and no base cases. 3. In group 2, mild pulp response was found in early stage and repairing process was found as the time elapsed. In no base cases, healing process was delayed slightly. 4. There was little difference in the result among Heliosit group, Durafill group and Hipol group.

  • PDF

Finite element analysis of casting processes considering molten-metal flow and solidification (용탕유동과 응고를 고려한 주조공정의 유한요소해석)

  • Yoon, Suck-Il;Kim, Yong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.110-122
    • /
    • 1996
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting process consists of mold filling and solidification. Both filling and solidication process were simulated simultaneously to investigate the effects of process variables and to predict the defect. At filling process, thermal coupling was especially considered to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simullation of the actual casting processes. At mold filling process, Lagragian-type finite element method with automatic remeshing scheme was used to find the material flow. A perturbation method with artificial viscosity is adopted to avoid numerical instability in low viscous fluid. At solidification process, enthalpy-based finite element method was used to solove the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidification time, position of solidus line, liquidus line and thermal residual stress are found. Through the study, the importance of combined analysis has been emphasized. Finite element tools developed in this study will be used process design of casting process and may be basic structure for total CAE system of castings which will be constructed afterward.

  • PDF

Optimal Control of Injection Molding Process by Using temperature Sensor (캐비티 온도센서를 이용한 최적 사출공정 제어)

  • Park, Cheon-Soo;Kang, Chul-Min
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.30-33
    • /
    • 2008
  • Injection Molding is the most effective process for mass production of plastic parts. The injection molding process is composed with several steps such as Filling, Packing, Holding, Cooling, Ejecting. Among them, filling and packing process should be considered carefully to improve accuracy of dimension, surface quality of plastic parts. Usually the quality above-mentioned is managed with weight of part after molding on the field. In this paper, a series of experiment for molding automotive front bumper was conducted with cavitity temperature sensor to optimize switch-over time(V-P switching), hot runner vale gate sequence time during filling and packing step for the purpose of uniform quality, weight at every molding. As a result, it was found that it is effective method to use temperature sensor in injection molding for quality control of plastic molding.

  • PDF

Optimizations of Air-trap Locations in the Speaker Encloser of Mobile Phone by Injection Molding Simulations (사출성형 시뮬레이션에 의한 휴대폰 스피커 인클로저의 에어트랩 위치 최적화)

  • Park, Ki-Yoon;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.85-90
    • /
    • 2011
  • In this paper a design procedure via computer-aided molding simulation is presented to optimize the air-trap locations in a speaker encloser of mobile phone. The molding flow simulation reveals that the race-tracking phenomenon is the dominant feature in the current mold design. In obtaining an optimal filling pattern, the local modifications of the wall thickness such as in a flow leader attachment are considered as the primary control factor, and both the gate position and the filling time become the secondary control factor. In the one-at-a-time approach, the last location to be filled in the mold cavity could be successfully moved to the extremities of the part, allowing a natural ventilation of entrapped air through the mold parting plane.

Effect of Boundary Slip Phenomena in Nanoimprint Lithography Process (나노임프린트 리소그래피 공정에서 Slip에 의한 경계 효과)

  • Lee, Young-Hoon;Kim, Nam-Woong;Sin, Hyo-Chol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.144-153
    • /
    • 2009
  • It is widely known that no-slip assumptions are often violated on regular basis in micrometer- or nanometer-scale fluid flow. In the case of cavity-filling process of nanoimprint lithography(NIL), slip phenomena take place naturally at the solid-to-liquid boundaries, that is, at the mold-to-polymer or polymer-to-substrate boundaries. If the slip or partial slip phenomena are promoted at the boundaries, the processing time of NIL, especially of thermal-NIL which consumes more tact time than that of UV-NIL, can be significantly improved. In this paper it is aimed to elucidate how the cavity-filling process of NIL can be influenced by the slip phenomena at boundaries and to what degree those phenomena increase the process rate. To do so, computational fluid dynamics(CFD) analysis of cavity filling process has been carried out. Also, the effect of mold pattern shape and initial thickness of polymer resist were considered in the analysis, as well.