• Title/Summary/Keyword: Filling Pattern Optimization

Search Result 7, Processing Time 0.018 seconds

Optimizations of Air-trap Locations in the Speaker Encloser of Mobile Phone by Injection Molding Simulations (사출성형 시뮬레이션에 의한 휴대폰 스피커 인클로저의 에어트랩 위치 최적화)

  • Park, Ki-Yoon;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.85-90
    • /
    • 2011
  • In this paper a design procedure via computer-aided molding simulation is presented to optimize the air-trap locations in a speaker encloser of mobile phone. The molding flow simulation reveals that the race-tracking phenomenon is the dominant feature in the current mold design. In obtaining an optimal filling pattern, the local modifications of the wall thickness such as in a flow leader attachment are considered as the primary control factor, and both the gate position and the filling time become the secondary control factor. In the one-at-a-time approach, the last location to be filled in the mold cavity could be successfully moved to the extremities of the part, allowing a natural ventilation of entrapped air through the mold parting plane.

Beam Pattern Optimization of Hexagonal Array Transducer Using Finite Element Method (유한 요소기법에 의한 육각형 배열 변환기의 지향성 최적화)

  • 장순석;이제형;안흥구
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.123-128
    • /
    • 2000
  • This paper describes the optimization of the hexagonal array transducer using finite element method. The transducer consists of the disc type sensors. Three dimensional beam patterns of each element and the array transducer are analysed using the finite element code ATILA. Beam patterns were analyzed for the disc type transducer. To optimize beam patterns of the array transducer, Chebyshev polynomial weight is applied to each element. In case of applying optimized weight, a 30 degree width beam pattern is presented at 10kHz. This paper also includes the effect of rubber filling material instead of using the water inside the transducer array.

  • PDF

Optimization of Casting Design for Automobile Transmission Gear Housing by 3D Filling and Solidification Simulation in Local Squeeze Diecasting Process (국부가압 다이캐스팅 공정에서 3차원 유동 및 응고해석을 통한 자동차 변속기 Gear Housing의 주조방안 설계 최적화)

  • Park, Jin-Young;Kim, Eok-Soo;Park, Yong-Ho;Park, Ik-Min
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.668-675
    • /
    • 2006
  • In the partial squeeze casting process, the filling behavior of liquid metal and solidification pattern in thick area have significant influence on the quality of casting products and die life. For the optimal casting design of automobile transmission gear housing, various analyses were performed in this study by using computer simulation code, MAGMAsoft and the simulation results were compared and analyzed with experimental results. By air pressure criteria, internal porosities caused by air entrap during the mold filling were predicted and reduced remarkably by modification of gating system. Also, optimal squeeze-time lag to apply partial squeeze pin in thick area was calculated and the castings was free from shrinkage defects with the result of solidification analysis. Consequently, casting design for automobile transmission gear housing was optimized and approved by Computer Tomography.

Improvement of Moldability for Ultra Thin-Wall Molding with Micro-Patterns (마이크로 패턴을 가진 초박육 사출성형의 성형성 개선)

  • Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.556-561
    • /
    • 2007
  • The rapid thermal response(RTR) molding is a novel process developed to raise the temperature of mold surface rapidly in the injection stage and then cool rapidly to the ejection temperature by air or water. The objectives of this paper are to investigate the effect of mold temperature, pressure and thickness of micro pattern molding and to provide a optimization of RTR injection molding for micro pattern from Moldflow simulation. Optimal minimum temperature and pressure was found without shortcut according to thickness. Filling percentage was influenced by glass transition temperature with the kinds of resin. Optimal temperature is slightly higher than glass transition temperature irrespectively of pressure, thickness, the kinds of resin in the micro pattern molding.

A study on the effect of binder properties on feedstock and micro powder injection molding process (마이크로 분말사출성형에서 바인더 물성이 피드스탁 및 성형공정에 미치는 영향에 관한 연구)

  • Lee, Won-sik;Kim, Yong-dae
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • The fabrication process of micro pattern structure with high precision and high aspect ratio using powder injection molding (PIM) is developed. In the PIM process, the metal powder is mixed with the binder systems and the mixture is injected into the metal mold. The injection molded green parts are debinded and sintered to reach final shape and properties. In this method, the optimization of physical properties such as fluidity and strength of the binder system is essential for perfect filling the high aspect ratio micro-pattern. For this purpose, the correlation between the properties of the binder system and feedstock and ${\mu}-PIM$ process was investigated, and a binder system with low viscosity at low temperature(about $110^{\circ}C$) and high strength after cooling was investigated and applied. Employing this process, high precision parts with line type micro pattern structure which has pattern size $160{\mu}m$ and aspect ratio more than 2 can be manufactured.

Analysis of the High Pressure Die Casting Process by Computer Simulation (수치해석에 의한 고압다이캐스팅용 금형설계 및 주조공정해석)

  • Lee, Chang-Ho;Choi, Jae-Kwon;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.20 no.6
    • /
    • pp.400-406
    • /
    • 2000
  • Computer simulation for the predictions of casting defects is very important to produce high quality castings with less cost. Complicate shaped Al solenoid housing part was selected to be cold chamber die cast and a numerical simulation technique was applied for the optimization of the chill vent position and gating. A first design led to insufficient central flow. This flow left the last filled areas falling into the inner portion of the part. And last filled area did not fit the chill vent position. So these resulted in a high possibility of air entrapment in the casting and the design was not proper for the part. The design was improved by using a proper gating system, a more chill vent and proper overflow positions. New design provided a homogenous mold filling pattern and the last filled areas that being located at the overflow and chill vent. Casting plan which produce good quality solenoid housing part was established by using the computer simulation.

  • PDF

Difference in Solidification Process between Al-Mg Alloy and Al-Si Alloy in Die-Casting (Al-Mg계 합금과 Al-Si계 합금의 다이캐스팅 응고과정의 차이)

  • Choi, Se-Weon;Kim, Young-Chan;Cho, Jae-Ik;Kang, Chang-Seog;Hong, Sung-Kil
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.82-85
    • /
    • 2012
  • The effect of the alloy systems Al-Mg alloy and Al-Si alloy in this study on the characteristics of die-casting were investigated using solidification simulation software (MAGMAsoft). Generally, it is well known that the casting characteristics of Al-Mg based alloys, such as the fluidity, feedability and die soldering behaviors, are inferior to those of Al-Si based alloys. However, the simulation results of this study showed that the filling pattern behaviors of both the Al-Mg and Al-Si alloys were found to be very similar, whereas the Al-Mg alloy had higher residual stress and greater distortion as generated due to solidification with a larger amount of volumetric shrinkage compared to the Al-Si alloy. The Al-Mg alloy exhibited very high relative numbers of stress-concentrated regions, especially near the rib areas. Owing to the residual stress and distortion, defects were evident in the Al-Mg alloy in the areas predicted by the simulation. However, there were no visible defects observed in the Al-Si alloy. This suggests that an adequate die temperature and casting process optimization are necessary to control and minimize defects when die casting the Al-Mg alloy. A Tatur test was conducted to observe the shrinkage characteristics of the aluminum alloys. The result showed that hot tearing or hot cracking occurred during the solidification of the Al-Mg alloy due to the large amount of shrinkage.