• Title/Summary/Keyword: Filler content

Search Result 394, Processing Time 0.03 seconds

Extraction of Micro Filler from Bio-waste Material (Bio waste 소재로부터의 마이크로 필러 추출)

  • Nam, Gibeop;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.209-214
    • /
    • 2018
  • This paper explain about the development of environmental friendly, low cost and stable supply material i.e., rice husk and shell were used as micro incorporating bio waste filler. Those were processed by ball mill and analyzed through micro observation by FE-SEM, EDS and particle size distribution. The obtained filler was mixed with epoxy resin for the manufacturing of CFRP composite and study tensile properties. In EDS analysis main contents of rice husk and rice husk ash are C, O and Si. When rice husk was burned C and Si ration were increased. Shell powder has C, O and Ca. It caused $CaCO_3$ from shell. Surface weighted mean of rice husk powder is $6.19{\mu}m$ and volume weighted mean is $14.77{\mu}m$. And it has rod type particles which caused hair and husk structure parts. Surface weighted mean of rice husk ash powder is $1.55{\mu}m$ and volume weighted means is $8.20{\mu}m$. Surface weighted mean of shell powder is $2.53{\mu}m$ and volume weighted mean is $5.79{\mu}m$. The tensile decreased with increasing the content of micro filler in CFRP composites. In case of rice husk, the significant decrement of tensile strength was observed. and in case of shell powder, there is no effect of changes take place in tensile strength.

Effects of Preflocculated Filler Flocs and Nano-sized Coating Binder on Fold Cracking of Coated Paper (충전물 선응집체 크기와 나노 바인더에 의한 도공지의 접힘터짐 변화)

  • Im, Wanhee;Seo, Dongil;Oh, Kyudeok;Jeong, Young Bin;Youn, Hye Jung;Lee, Hak Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.91-97
    • /
    • 2015
  • Papermakers wish to increase the filler content of printing and writing grades because it allows saving in production cost through fiber replacement and improving the formation, and optical and printing properties of the paper. However, high filler loading in the base paper has negative side effects. It reduces the mechanical properties of paper and induces cracking at the fold after coating process. Fold cracking is one of the most frequent quality complaints for magazines, high quality books, etc. Two approaches were examined as methods to reduce fold cracking. One approach was to use preflocculated fillers, which was expected to reduce the fold cracking because it would decrease the interfiber bonding. The other approach was to use a new coating binder that gives greater binding power and thereby provides an opportunity of reducing the fold cracking of coated paper. When filler preflocculation was employed in producing the base paper, fold cracking becomes more severe than conventional filler loading condition. On the other hand, use of nano sized binder in coating improved the tensile properties of the coating layer and thereby decreased the crack area. It was shown that tensile properties of coating layer played an important role in fold cracking of coating.

Mechanical properties of sheet molding compounds (SMC) with different size and contents of ground calcium carbonate (중질 탄산칼슘의 입자크기 및 첨가량 변화에 따라 제조된 시트몰딩 컴파운드(SMC)의 기계적 특징)

  • Lee, Yoonjoo;Koh, Kwang-Woon;Kwon, Woo-Teck;Kim, Younghee;Shin, Dong-Geun
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.84-91
    • /
    • 2017
  • Fiber reinforced plastic (FRP) is a typical plastic composite which is fabricated using fiber reinforcement with resin to represent the high strength properties. The mechanical properties of FRP should be determined by a fibrous material, and the studies about the role of fiber as a reinforcement has been an interested subject, whereas a study along the effect of filler is not so big. However, the filler effect must be considered on the properties of the composite, because the filler influence on the plastic or resin compound which reacts as a matrix material of the composite. Thus, in this work, we studied the filler effect with size and content using $3-6{\mu}m$ of ground calcium carbonate. The specimen was prepared by sheet molding compound (SMC) method, and the mechanical properties were compared with bending strength and tensile strength. As a result, it was confirmed that the size and contents of calcium carbonate affected the strength of composites, and the condition of $2.8{\mu}m$ which was the smallest size condition showed the highest strength.

Conductive Properties of Thermoplastic Carbon Fiber Reinforced Plastics Highly Filled with Carbon Fiber Fabrics and Conductive Carbon Fillers (탄소섬유 직물 및 전도성 탄소 필러가 고충진 된 열가소성 탄소섬유강화플라스틱의 전도 특성)

  • Kim, Seong Yun;Noh, Ye Ji;Jang, Ji-un;Choi, Seong Kyu
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.290-295
    • /
    • 2021
  • The application of lightweight structural composites to automobiles as a solution in line with global fuel economy regulations to curb global warming is recognized as a megatrend. This study was conducted to provide a technical approach that can respond to the issue of replacing parts that require conductive properties to maximize the application of thermoplastic carbon fiber reinforced plastics (CFRPs), which are advantageous in terms of repair, disposal and recycling. By utilizing the properties of the low-viscosity polymerizable oligomer matrix, it was possible to prepare a thermoplastic CFRP exhibiting excellent impregnation properties while uniformly mixing the conductive filler. Various carbon-based conductive fillers such as carbon black, carbon nanotubes, graphene nanoplatelets, graphite, and pitch-based carbon fibers were filled up to the maximum content, and electrical and thermal conductive properties of the fabricated composites were compared and studied. It was confirmed that the maximum incorporation of filler was the most important factor to control the conductive properties of the composites rather than the type or shape of the conductive carbon filler. Experimental results were observed in which it might be advantageous to apply a one-dimensional conductive carbon filler to improve electrical conductivity, whereas it might be advantageous to apply a two-dimensional conductive carbon filler to improve thermal conductivity. The results of this study can provide potential insight into the optimization of structural design for controlling the conductive properties of thermoplastic CFRPs.

A novel approach to fabricate Cu-Ni core-shell microwires

  • Song, Chang-Hyun;Kim, Jong-Woong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.234-234
    • /
    • 2015
  • Metallic microwires are a promising material for use as a filler in various conductive composite structures. Because of their high anisotropy in shape, a low percolation threshold could be achieved, which is beneficial to a low-cost fabrication and better electrical conductivity even under an extremely low solid content. Here we developed a facile method to fabricate the Cu (core)-Ni (shell) microwires.

  • PDF

A STUDY ON THE FRACTURE TOUGHNESS OF DENTAL COMPOSITE RESINS (치과용 복합레진의 파괴인성에 관한 실험적 연구)

  • Park, Jin-Hoon;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.2
    • /
    • pp.17-33
    • /
    • 1990
  • The purpose of this study was to evaluate the fracture toughness of dental composite resins and to investigate the filler factor affecting the fracture behaviour on which the degree of fracture toughness depends. Six kinds of commercially available composite resin;, including two of each macrofilled, microfilled, and hybrid type were used for this study, The plane strain fracture toughness ($K_{10}$) was determined by three-point bending test using the single edge notch specimen according to the ASTM-E399. The specimens were fabricated with visible light curing or self curing of each composite resin previously inserted into a metal mold, and three-point bending test was conducted with cross-head speed of 0.1mm/min following a day's storage of the specimens in $37^{\circ}C$ distilled water. The filler volume fractions were determined by the standard ashing test according to the ISO-4049. Acoustic Emission(AE), a nondestructive testing method detecting the elastic wave released from the localized sources In material under a certain stress, was detected during three-point bending test and its analyzed data was compared with, canning electron fractographs of each specimen. The results were as follows : 1. The filler content of composite resin material was found to be highest in the hybrid type followed by the macrofilled type, and the microfilled type. 2. It was found that the value of plane strain fracture toughness of composite resin material was in the range from 0.69 MPa$\sqrt{m}$ to 1 46 MPa$\sqrt{m}$ and highest In the macrofilled type followed by the hybrid type, and the microfilled type. 3. The consequence of Acoustic Emission analysis revealed that the plane strain fracture toughness increased according as the count of Acoustic Emission events increased. 4. The higher the plane strain fracture toughness became, the higher degree of surface roughness and irregularity the fractographs demonstrated.

  • PDF

Development of Epoxy Composites with SWCNT for Highly Thermal Conductivity (고방열 재료 개발을 위한 에폭시/단일벽 탄소나노튜브 복합체 개발)

  • Kim, Hyeonil;Ko, Heung Cho;You, Nam-Ho
    • Composites Research
    • /
    • v.33 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Over the past decade, liquid crystalline epoxy (LCER) has attracted much attention as a promising matrix for the development of efficient heat dissipation materials. This study presents a comprehensive study including synthesis, preparation and chacterization of polymer/inorganic composites using typical 4,4-diglycidyloxybiphenyl (DP) epoxy among LECR. To confirm the thermal conductivity of composite materials, we have prepared composite samples composed of epoxy resin and single-wall carbon nanotube (SWCNT) as a filler. In particular, DP composites exhibit higher thermal conductivity than commercial epoxy composites that use the same type of filler due to the highly ordered microstructure of the LCER. In addition, the thermal conductivity of the DP composite can be controlled by controlling the amount of filler. In particular, the DP composite containing a SWCNT content of 50 wt% has the highest thermal conductivity of 2.008 W/mK.

Crack and Cutting Resistance Properties of Natural Rubber(NR) Compounds with Silica/Carbon Black Dual Phase Filler (Silica/Carbon Black이 충전된 NR 가황물의 내Crack 및 내Cutting 특성)

  • Son, Woo-Jung;Cho, Ur-Ryung;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.37 no.2
    • /
    • pp.86-98
    • /
    • 2002
  • The application of silica/carbon black dual phase fillers to natural rubber(NR) compound was investigated. When the amounts of filler content were restricted to 60phr, the optimum ratio of dual phase fillers were 25phr/35phr of silica/carbon black. It was found that these new fillers give better overall performance in comparison with carbon black in tear strength, crack resistance, and cutting resistance. Also the thermal degradation resistance of NR vulcanizates which were filled with dual phase fillers was better than that of the carbon black. Dual phase fillers filled NR vulcanizates showed better viscoelastic properties, like tan${\delta}$, for the wet skid resistance and rolling resistance of motor vehicle tires.

Esthetic Properties of Photoinitiated Polymeric Dental Restorative Nanocomposites (광중합형의 치아수복용 고분자 나노복합체의 심미 특성)

  • Kim, Oh-Young;Han, Sang-Hyuk;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.102-105
    • /
    • 2005
  • Photoinitiated polymeric dental restorative nanocomposites (PDRNC) were designed to be useful for the variety of dental restoration. Hybrid-filler composed of barium silicate (avg. dia.:1 ${\mu}m$) and nano-sized silica (avg. dia: 40 and 7 nm) was adopted as a filler system. To improve the interfacial behavior with the resin matrix of bisphenol A glycerolate methacrylate/triethyleneglycol dimethacrylate (60/40 wt%), the surface of the filler was hydrophobically treated with a silane coupling agent. A visible light system of camphorquinone photo-initiator and 2-(dimethylamino)ethyl methacrylate photo-accelerator was utilized to activate the PDRNC. Esthetic properties of PDRNC was investigated by measuring the Hunter L, a, b values and it was discovered that PDRNC produced in this work showed excellent esthetic properties with an increase in 7 nm nanofiller content.