• Title/Summary/Keyword: Fill material

Search Result 445, Processing Time 0.045 seconds

A Study of CFRD using a Gravel Fill (하상사력재를 이용한 CFRD의 연구)

  • Jeong, Chan-Kyun;Noh, Tae-Gil;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.842-853
    • /
    • 2008
  • In the construction of dam, the key factor which decides the type of dam is security of materials resource. Because of the large scale earth work, the ability to supply the materials is essential part about economical efficiency. The research is the case study about controlling the plan to secure the material resources in the design of Buhang multipurpose dam. In case of Buhang multipurpose dam, at that time of basic design, it was planned to use a rock fill material. From the detail investigation about the river bed accumulative layer widely spread on the submerged district on the basic design, the research is accomplished to replace rock material with gravel material. After the investigation of whole reserves of gravel material, estimation of conformity as dam construction material from analysis of grain size distribution, the case study of oversea construction, and the material property comparison between rock fill material and gravel fill material, it is verified th possibility of using the gravel fill. Thereafter, the analysis of dam stability using a gravel fill material is accomplished. Finally, A gravel fill material can be used as the main construction material of CFRD, therefore the efficiency of resource recycling in the submerged area is maximized, and the established plan is more advantageous to stability, constructibility, environmentibility than the case of using a rock fill.

  • PDF

Durability Characteristics of Controlled Low Strength Material(Flowable Fill) with High Volume Fly Ash Content (다량의 플라이 애쉬를 사용한 저강도 고유동 충전재의 내구특성에 관한 연구)

  • 원종필;신유길
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.113-125
    • /
    • 2000
  • The purpose of this study was to examine the durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content. Flowable fill refer to self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. The two primary advantages of flowable fill over traditional methods are its ease of placement and the elimination of settlement. Therefore, in difficult compaction areas or areas where settlement is a concern, flowable fill should be considered. The fly ash used in this study met the requirements of KS L 5405 and ASTM C 618 for Class F material. The mix proportions used for flowable fill are selected to obtain low-strength materials in the 10 to 15kgf/$\textrm{cm}^2$ range. The optimized flowable fill was consisted of 60kg f/$\textrm{m}^3$ cement content, 280kgf/$\textrm{m}^3$ fly ash content, 1400kgf/$\textrm{m}^3$ sand content, and 320kgf/$\textrm{m}^3$ water content. Subsequently, durability tests including permeability, warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted. The results indicated that flowable fill has acceptable durability characteristics.

Durability Characteristics of Low Strength Fly ash-Cement Composites (저강도 플라이애시-시멘트 복합체의 내구특성)

  • 원종필;신유길;이용수;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.142-147
    • /
    • 2000
  • Durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content was examined. The mix proportions used for flowable fill are selected to obtain low-strength material in the 10 to 15kgf/㎥ range. The optimized flowable fill was consisted of 60kgf/㎥ cement content, 280kgf/㎥ fly ash content, 1400kgf/㎥sand content, and 320kgf/㎥water content. Subsequently, durability tests including permeability warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted The test results indicated that flowable fill has has acceptable durability characteristics.

  • PDF

Deposition Properties of Dredged Materials of Kun-Jang Industrial Complex (군산지역 준설토의 퇴적특성)

  • 한영철;송정락
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.61-64
    • /
    • 1992
  • Recently, by the lack of fill material, the dredg and fill(hydraulic fill) method is commonly used in reclamation projects. Hydraulic fill method dredges the soil and send it with water through the transportation pipe to the site. The intial state of the hydraulic fill material is accordingly the mixture of water and soil skeleton which settles with time forming a new soil layer. The properties of new soil layer is governed the size of the soil skeleton, the flow velocity of mixing water, salt concentration, the distance from the discharge pipe outlet, and other dredging conditions when settling process occur. In this study, the effects of gradation of derdged soil on the deposition properties (with emphasis on the optimum spacing of the discharge pipes) was investigated by field test. It was found that the soft fine graind soil was forme at 350m from the discharge pipe outlet when the dredged material was classified as CL, while the soft fine grained soil was not formed even at the distance farther than 400m from the diacharge pipe outlet when the dredged material was classified as SM.

  • PDF

Optimization of Flowable Fill with High Volume Fly Ash Conten (다량의 플라이애시를 사용한 고유동 충전재의 최적배합설계)

  • 원종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.81-90
    • /
    • 1999
  • The purpose of this study is to examine the uses of fly ash asa type of construction material. This paper presents the results of research performed to identify optimum mix proportions for production of lowable fill with high volume fly ash content . The fly ash used in this study met the requirements of KS L 5405 and ASTM C 618 for Class F material. The flowable fill with high volume fly ash content was investigated for strength and flowability characteristics. Tests were carried out on flowable fill designed to have 10 ~15kgf/$\textrm{cm}^2$ compressive strength at 28 days with fly ash contents of approximately 260kgf/㎥. Slump was held at 25$\pm$1cm for all mixtures produced to range from 5kgf/$\textrm{cm}^2$ to 14kgf/$\textrm{cm}^2$ compressive strengths at 28 days. To produce flowable fill with high volume fly ash , first the influential variables were identified in an experimental study based on factorial design. Among the proportioning variables investigated, cement ,fly ash, and sand contents were found to have statistically significant effect on strength and slump of flowable fill . Subsequently, response surface analysis techniques were used to devise an experimental program that helped determine the optimum combinations of the selected influential variables based on material properties and cost. The optimized flowable fill were then technically evaluated. It is shown that flowable fill has acceptable compressive strength , slump flow, hardening time, and permeability.

  • PDF

An Experimental Study on Connection Strength between Tie-bar and Facing block composing Reinforced Earth (보강토옹벽을 구성하는 타이바와 전면블록의 연결강도에 관한 실험연구)

  • Lee Seung-Hyun;Kim Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.404-408
    • /
    • 2006
  • In this paper, connection strength between facing block and tie-bar was investigated through experimental study with varying in-fill material such as concrete, soil and crushed stone. Also, connection strength between anchor block and tie-bar was investigated with varying in-fill material. According to the experimental results, in case of using in-fill concrete, connection strength between facing block and tie-bar was larger than allowable tension load of tie-bar. Whereas in case of using in-fill soil or crushed stone, connection strength between facing block and tie-bar was less or similiar to allowable tension load of tie-bar. Connection strength between anchor block and tie-bar for which crushed stone was used as in-fill material, was larger than allowable tension load of tie-bar.

  • PDF

Clinical performance of class I cavities restored with bulk fill composite at a 1-year follow-up using the FDI criteria: a randomized clinical trial

  • Chinni Suneelkumar ;Puttaganti Harshala ;Koppolu Madhusudhana;Anumula Lavanya;Anirudhan Subha ;Sannapureddy Swapna
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.24.1-24.11
    • /
    • 2021
  • Objectives: The present study aimed to evaluate the survival rate and clinical performance of class 1 composite restorations restored with the Filtek Bulk Fill composite material using either the bulk fill technique or the incremental technique at baseline (1 week) and at 3, 6 and 12 months of follow-up. Materials and Methods: Forty-two patients with at least 2 carious teeth were selected. Following randomization, one tooth was restored with the Filtek Bulk Fill composite using the incremental fill technique, and the other tooth was restored with the same material using the bulk fill technique. Patients were recalled for follow-up at baseline (1 week) and 3, 6, and 12 months and evaluated using the FDI criteria. Results: The data were analyzed using the McNemar χ2 test. No statistically significant differences were found between the scores of teeth restored with either technique. At baseline and at 3, 6, and 12 months of follow-up; there were no significant difference in the clinical status of both groups of restorations. Conclusions: Within the limitations of this study, using the bulk fill technique for restorations with the Filtek Bulk Fill material seems to be equally efficient to using the incremental fill technique.

Long-term Compressible Settlement of Coal Ash and Tire Shred as Fill Materials (석탄회 및 폐타이어 재료의 장기 압축 침하 거동 특성)

  • Lee, Sung-Jin;Shin, Min-Ho;Hwang, Seon-Keun;Lee, Yong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.858-865
    • /
    • 2009
  • Based on the proven feasibility of bottom ash and tire shred-soil mixtures as lightweight fill materials, tire shred-bottom ash mixtures were suggested as a new lightweight fill material to replace the conventional construction material with bottom ash. Therefore, we carried out the laboratory test, field compaction test and performance test of large scale embankment in order to evaluate their suitability for the use of lightweight fill materials in the before studies. We could verified that the ash, tire-shred and the mixture are able to be the useful materials as light fill materials. In this study, we estimated the long-term compressible settlements for 6 materials such as TA(Tire-Bottom Ash mixture), TBA(Tire-Bottom Ash<5mm) mixture, TWS(Tire-Weathered Soil mixture), Bottom Ash, Bottom Ash(<5mm), Weathered soils.

  • PDF

Performance Test of Large Scale Embankment made with Bottom Ash and Tire Shred (저회-폐타이어 재생혼합토의 실대형 성토구조물 성능 시험)

  • Lee, Sung-Jin;Shin, Min-Ho;Hwang, Seon-Keun;Koh, Tae-Hoon;Lee, Yong-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1756-1767
    • /
    • 2008
  • Recently, a global trend has been established to facilitate the use of waste materials in geotechnical engineering applications. In Korea, where there is the need to save natural resources as these may become scare in the near future and to prevent excessive ground excavation for natural aggregates. The annual production of scrap tire and bottom ash has sharply increased in recent years. Therefore, it will be good waste resource recycling, if we can utilize the above wastes as fill materials in soft ground. In this study, based on the proven feasibility of bottom ash and tire shred-soil mixtures as lightweight fill materials, tire shred-bottom ash mixtures were suggested as a new lightweight fill material to replace the conventional construction material(soil) with bottom ash. Therefore, the main objective of this research is to investigate the feasibility of tire shred-bottom ash mixtures in order to estimate their suitability for the use of lightweight fill materials. So we carried out the performance tests of 2 large scale embankment which were made with tire shred-bottom ash mixture and the conventional fill material(weathered soil) respectively.

  • PDF

Investigation of the Optimum Mixture of Flowable-Fill Applied Bottom-ash (Bottom-ash를 적용한 고유동충전재의 최적배합검토)

  • 김성수;원종필;김동현;김종필;이용수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.369-372
    • /
    • 2000
  • This investigation aims at the optimum mixing of flexible flowable-fill made of Bottom-ash as an industrial waste. Flowable-fill refer to self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. The two primary advantages of flowable fill over traditional methods are its ease of placement and the elimination of settlement. Therefore, in difficult compaction areas or areas where settlement is a concern, flowable fill should be considered. This study compares Bottom-ash with fine aggregate in physical character. The mixing design indicates a various mixing-rate.

  • PDF