• Title/Summary/Keyword: Filed Emission Display

Search Result 6, Processing Time 0.024 seconds

A study on Technical Development a Trend of Digital Image Information (디지털 영상정보의 기술 발전 동향 연구)

  • Kim, Soo-Yong;Jee, Suk-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.755-760
    • /
    • 2008
  • 영상 Display의 시장 동향과 기술 동향에 대하여 기술하였다. 영상 Display 로서는 그밖에 유기 EL(Electroluminescence), FED(Filed Emission Display) 등이 있고 차세대 Display도 개발이 진행되고 있다. 양자 모두 스스로 발광하는 형태를 취하기 위해서는 Back Light가 필요하지 않고, 박형과, 넓은 시야각, 또한 응답 속도가 빠르고 때문에 액정 Display 보다 유리하리라 판단된다.

  • PDF

Analysis of Electric Fields at Field Emission Display Tipes Using the Image Charge Method and 3-D Numerical Analysis (영상전하법과 3차원 수치해석을 이용한 Field Emission Display Tip 전계의 해석과 그 비교)

  • Min, Sung-Wook;Lee, Byoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.558-560
    • /
    • 1995
  • Tunneling current from filed emission display tips is calculated by numerical analysis using a finite element method software. For simple tip structures it is shown that the image charge method could provide an efficient way to estimate the tunneling current.

  • PDF

Carbon nanotube-coated $ZnGa_2O_4:Mn^{2+}$ phosphor for field emission display

  • Park, Je-Hong;Park, Boo-Won;Choi, Nam-Sik;Kim, Jong-Su
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1543-1544
    • /
    • 2007
  • Carbon nanotubes (CNTs) are coated on green $ZnGa_2O_4:Mn^{2+}$ phosphor for filed emission display. The cathodoluminescent intensity of CNTs-phosphor is improved compared with uncoated phosphors. Also the effects of phosphors-coated CNTs on electrical and degradation characteristics are investigated to reveal the reason of the enhanced emission intensity.

  • PDF

Preparation and Luminescent Properties of GdOBr:Ce Blue Phosphors for FED (FED용 GdOBr:Ce 청색 형광체의 제조 및 발광특성)

  • Lee, Jun;Park, Joung-Kyu;Han, Cheong-Hwa;Park, Hee-Dong;Yun, Sock-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.240-244
    • /
    • 2002
  • The GdOBr:Ce phosphor were prepared by solid state reaction using starting chemicals of $Gd_2O_3,\;CeO_2\;and\;NH_4Br$. Under 370nm UV excitation, GdOBr:Ce phosphors showed blue emission band with a spectral range of 410∼430nm. The maximum photoluminescence(PL) emission intensity was observed at 2mol% Ce content. In order to look for feasibility of application for low voltage filed emission display, cathodoluminescence(CL) of GdOBr:Ce phosphors were measured. CL emission spectra was found to be in the range of 410∼430nm, which is the same as PL spectra. The phosphors with 1mol% Ce concentration showed the maximum CL emission intensity. For the comparison of degradation property of the prepared phosphors with commercial ones, the electron beam was applied for 10min. From the result, GdOBr:Ce could be used as a blue phosphor for FED.

Dry Etching Properties of PAR (poly-arylate) Substrate for Flexible Display Application (플렉시블 디스플레이 응용을 위한 폴리아릴레이트 기판의 식각 특성)

  • Hwanga, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.824-828
    • /
    • 2016
  • In this study, effects of ICP (inductively coupled plasma) treatment on PAR thin film have been investigated. A maximum etch rate of the PAR thin films and the selectivity of PAR to PR were obtained as 110 nm/minand 1.1 in the $CF_4/O_2$ (5:15 sccm) gas mixture. We present the surface properties of PAR thin film with various treatment conditions. The surface morphology and cross section of the PAR thin film was observed by AFM (atomic force microscopy) and FE-SEM (filed emission scanning electron microscopy).

Emission Properties of Electroluminescent Device Using Poly(3-hexylthiophene) as Emilting Material (The Poly(3-hexylthiophene)을 발광층으로 사용한 전계 발광소자의 발광특성)

  • 김주승;구할본;조재철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.263-266
    • /
    • 1999
  • Electrolunlinescent devices based on conjugated polymer emitting materials have been much attracted possible applications for multicolor flat panel display, since the conjugated polymers have a small band gap emitting obtained at a low driving voltage. In this paper, we fabricated the single layer EL device using poly(3-hexylthiophene) as emitting material Electroluminescence(EL) and I-V-L characteristics of indium-tin-oxide[ITO]P3HT/AI device with a various thickness were investigated. It was demonstrate that the I-V characteristics depend, not the voltage but the electric- field strength, The current is dependent on the electric filed and not on the applied voltage, indicating that the carriers are injected by a tunneling process. In the device, the barrier to hole injection is only 0.5eV and the barrier to electron injection is 1.5eV.

  • PDF