본 논문에서는 KLT(Kanade-Lucas-Tomasi) 추적기에서 특징점의 개수를 일정하게 유지시키기 위해 존재하는 특징점의 관리 부분을 FPGA(Field Programmable Gate Array)에 구현하기 위한 구조를 제안한다. FPGA 에 구현하기 위해 한정된 자원을 효과적으로 사용하도록 하는 것을 목표로 연산량이 많은 부분을 적은 연산량으로 구현 가능한 것으로 대체하고, 메모리의 크기와 접근 회수를 줄이기 위한 방법을 고려했다. 구현이 간단한 Harris 코너 검출기를 이용하여 특징점을 선택하고, 나눗셈 연산이 필요 없는 히스토그램을 이용하여 임계값을 설정해 특징점을 관리했다. C 언어로 시뮬레이션을 수행하여 제안한 방법을 확인했고, 기존의 특징점 관리 방법과의 비교를 통해 검증했다.
Global Navigation Satellite System (GNSS) receivers are becoming increasingly sophisticated, equipped with advanced features and precise specifications, thus demanding efficient and high-performance hardware platforms. This paper presents the design and implementation of a Field-Programmable Gate Array (FPGA)-based GNSS receiver development platform for multi-band signal processing. This platform utilizes a FPGA to provide a flexible and re-configurable hardware environment, enabling real-time signal processing, position determination, and handling of large-scale data. Integrated signal processing of L/S bands enhances the performance and functionality of GNSS receivers. Key components such as the RF frontend, signal processing modules, and power management are designed to ensure optimal signal reception and processing, supporting multiple GNSS. The developed hardware platform enables real-time signal processing and position determination, supporting multiple GNSS systems, thereby contributing to the advancement of GNSS development and research.
희소 행렬은 대부분의 요소가 0 인 행렬이다. 이러한 희소 행렬-행렬 곱셈을 수행할 경우 0 인 데이터 또한 곱셈을 수행하니 불필요한 연산이 발생한다. 이러한 문제를 해결하고자 행렬 압축 알고리즘 또는 곱셈의 부분합의 수를 줄이는 연구들이 활발히 진행 중이다. 하지만 현재의 연구들은 주로 단일 행렬 연산에 집중되어 있어 FPGA(Field Programmable Gate Array)와 특정 용도로 사용하는 가속기에서는 리소스를 충분히 활용하지 못해 비효율적이다. 본 연구는 FPGA 의 모든 리소스를 사용하여 다중 희소 행렬 곱셈을 수행하는 아키텍처를 제안한다.
Multiple-input multiple-output (MIMO) technology provides high data rate and enhanced quality of service for wireless communications. Since the benefits from MIMO result in a heavy computational load in detectors, the design of low-complexity suboptimum receivers is currently an active area of research. Lattice-reduction-aided detection (LRAD) has been shown to be an effective low-complexity method with near-maximum-likelihood performance. In this paper, we advocate the use of systolic array architectures for MIMO receivers, and in particular we exhibit one of them based on LRAD. The "Lenstra-Lenstra-Lov$\acute{a}$sz (LLL) lattice reduction algorithm" and the ensuing linear detections or successive spatial-interference cancellations can be located in the same array, which is considerably hardware-efficient. Since the conventional form of the LLL algorithm is not immediately suitable for parallel processing, two modified LLL algorithms are considered here for the systolic array. LLL algorithm with full-size reduction-LLL is one of the versions more suitable for parallel processing. Another variant is the all-swap lattice-reduction (ASLR) algorithm for complex-valued lattices, which processes all lattice basis vectors simultaneously within one iteration. Our novel systolic array can operate both algorithms with different external logic controls. In order to simplify the systolic array design, we replace the Lov$\acute{a}$sz condition in the definition of LLL-reduced lattice with the looser Siegel condition. Simulation results show that for LR-aided linear detections, the bit-error-rate performance is still maintained with this relaxation. Comparisons between the two algorithms in terms of bit-error-rate performance, and average field-programmable gate array processing time in the systolic array are made, which shows that ASLR is a better choice for a systolic architecture, especially for systems with a large number of antennas.
Kim Jong-Won;Cho Hyun-Chan;Seo Jae-Yong;Cho Tae-Hoon;Lee Sung-Jun
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.05a
/
pp.125-129
/
2006
By advent of NNC(Neural Network Chip), it is possible that process in parallel and discern the importance of signal with learning oneself by experience in external signal. So, the design of general purpose operation unit using VHDL(VHSIC Hardware Description Language) on the existing FPGA(Field Programmable Gate Array) can replaced EN(Expert Network) and learning algorithm. Also, neural network operation unit is possible various operation using learning of NN(Neural Network). This paper present general purpose operation unit using hierarchical structure of EN. EN of presented structure learn from logical gate which constitute a operation unit, it relocated several layer. The overall structure is hierarchical using a module, it has generality more than FPGA operation unit.
Transactions of the Korean Society of Automotive Engineers
/
v.23
no.1
/
pp.25-33
/
2015
This paper presents the d-q axis equivalent circuit model of an interior permanent magnet (IPM) which includes the iron loss resistance. The model is implemented to be able to run in real-time on the FPGA-based HIL simulator. Power electronic devices are removed from the motor control unit (MCU) and a separated controller is interfaced with the real-time simulated motor drive through a set of proper inputs and outputs. The inputs signals of the HIL simulation are the gate driver signals generated from the controller, and the outputs are the winding currents and resolver signals. This paper especially presents iron loss prediction which is introduced by means of comparing the torque calculated from d-q axis currents and the desired torque; and minimizing the torque difference. This prediction method has stable prediction algorithm to reduce torque difference at specific speed and load. Simulation results demonstrate the feasibility and effectiveness of the proposed methods.
JSTS:Journal of Semiconductor Technology and Science
/
v.17
no.1
/
pp.110-119
/
2017
This paper describes a CMOS image sensor (CIS) with dual correlated double sampling (CDS) and column-parallel analog-to-digital converter (ADC) and its measurement method using a field-programmable gate array (FPGA) integrated module. The CIS is composed of a $320{\times}240$ pixel array with $3.2{\mu}m{\times}3.2{\mu}m$ pixels and column-parallel 10-bit single-slope ADCs. It is fabricated in a $0.11-{\mu}m$ CIS process, and consumes 49.2 mW from 1.5 V and 3.3 V power supplies while operating at 6.25 MHz. The measured dynamic range is 53.72 dB, and the total and column fixed pattern noise in a dark condition are 0.10% and 0.029%. The maximum integral nonlinearity and the differential nonlinearity of the ADC are +1.15 / -1.74 LSB and +0.63 / -0.56 LSB, respectively.
Journal of the Korean Institute of Telematics and Electronics D
/
v.36D
no.5
/
pp.36-43
/
1999
A new design of a Direct Digital Frequency Synthesizer(DDFS) is presented, where a pipelined Coordinate Rotate Digital Computer(CORDIC) circuit is employed to calculate amplitude values of all the phase angles of sinusoidal waveforms produced. a near-optimal number of pipeline stages is determined based on an error analysis of calculated amplitude values in terms of the number of bits. The DDFS was implemented using a field programmable gate array, yielding a stable operating frequency of 11.75MHz. The measurement results show higher resolution, faster operating speed and simpler fabrication process, compared to ROM-based counterparts. The CORDIC-based DDFS yields 5 times higher resolution than conventional ROM-based versions.
Different biological tissues have different values of electrical resistivity. In EIT (electrical impedance tomography), we try to provide cross-sectional images of a resistivity distribution inside an electrically conducting subject such as the human body mainly for functional imaging. However, it is well known that the image reconstruction problem in EIT is ill-posed and the quality of a reconstructed image highly depends on the measurement error. This requires us to develop a high-performance EIT system. In this paper, we describe the development of a 16-channel digital EIT system including a single constant current source, 16 voltmeters, main controller, and PC. The system was designed and implemented using the FPGA-based digital technology. The current source injects 50KHz sinusoidal current with the THD (total harmonic distortion) of 0.0029% and amplitude stability of 0.022%. The single current source and switching circuit reduce the measurement error associated with imperfect matching of multiple current sources at the expense of a reduced data acquisition time. The digital voltmeter measuring the induced boundary voltage consists of a differential amplifier, ADC, and FPGA (field programmable gate array). The digital phase-sensitive demodulation technique was implemented in the voltmeter to maximize the SNR (signal-to-noise ratio). Experimental results of 16-channel digital voltmeters showed the SNR of 90dB. We used the developed EIT system to reconstruct resistivity images of a saline phantom containing banana objects. Based on the results, we suggest future improvements for a 64-channel muff-frequency EIT system for three-dimensional dynamic imaging of bio-impedance distributions inside the human body.
Kim, Tae-Min;Chung, Hae;Shin, Gun-Soon;Kim, Jin-Hee;Sohn, Soo-Hyeon
Journal of the Institute of Electronics Engineers of Korea TC
/
v.38
no.12
/
pp.1-9
/
2001
In the APON(ATM Passive Optical Network), the transmission of the upstream traffic is based on a TDMA(Time Division Multiple Access) method that an OLT(Optical Line Termination) permits ONUs(Optical Network Units) sending cells by allocating time slots. Because the upstream is not a streaming mode, the cell synchronizer has to be operated in the burst mode. Also, the cell phase monitor is required to prevent collisions between cells which are transmitted by multiple ONUs through a single optical fiber. In this paper, a TDMA burst cell synchroniser is implemented with the FPGA(Field Programmable Gate Array) being used in the APON based on G.983.1 for transmitting upstream cells. It has two main functions which are the upstream data recovery and the phase monitoring. The former is to recover the upstream data and clock in the OLT by seeking the preamble which is the overhead of the upstream time slot and by aligning the phase of the bit and cell with the system clock. The latter is to provide the information to the ONU to compensate for the equalization delay by monitoring continuously the phase difference between adjacent cells to avoid the cell collision on the upstream.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.