• Title/Summary/Keyword: Field-like conditions

Search Result 248, Processing Time 0.028 seconds

Linear Instability and Saturation Characteristics of Magnetosonic Waves along the Magnetic Field Line

  • Min, Kyungguk;Liu, Kaijun
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.85-94
    • /
    • 2020
  • Equatorial noise, also known magnetosonic waves (MSWs), are one of the frequently observed plasma waves in Earth's inner magnetosphere. Observations have shown that wave amplitudes maximize at the magnetic equator with a narrow extent in their latitudinal distribution. It has been understood that waves are generated from an equatorial source region and confined within a few degrees magnetic latitude. The present study investigates whether the MSW instability and saturation amplitudes maximize at the equator, given an energetic proton ring-like distribution derived from an observed wave event, and using linear instability analysis and particle-in-cell simulations with the plasma conditions at different latitudes along the dipole magnetic field line. The results show that waves initially grow fastest (i.e., with the largest growth rate) at high latitude (20°-25°), but consistent with observations, their saturation amplitudes maximize within ±10° latitude. On the other hand, the slope of the saturation amplitudes versus latitude revealed in the present study is not as steep as what the previous statistical observation results suggest. This may be indicative of some other factors not considered in the present analyses at play, such as background magnetic field and plasma inhomogeneities and the propagation effect.

Development of Vehicle Environment for Field Operational Test Data Base of Driver-vehicle's Behaviour (운전자 거동에 대한 필드 데이터베이스 구축을 위한 차량 환경 개발)

  • Kim, Jinyong;Jeong, Changhyun;Jeong, Minji;Jung, Dohyun;Woo, Jinmyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Recently, the automotive technology has developed with electronics and information technology as convergence technology while vehicles had been regarded as machines. Moreover, vehicles are becoming more intelligent and safer devices, assembly of advanced technologies by customers' demand. Even though all of installations of vehicle have attracted as diverting devices, it cause drivers' mistakes like delay of response on traffic condition. Here, we proposed the Field Operational Test (FOT) environment which could be used as driving and road conditions collector(Vehicle motion, Traffic condition, Driver input, Driver state, etc.) for researches about Driver Friendly Intelligent System(SCC, LDWS, etc.), Human Vehicle Interface(Driving Workload, etc.) and Economic Drive Model. Furthermore driving patten and fuel consumption patten of drivers were analyzed by measured data and direction of future research was suggested.

Dynamic Characteristics of Electro-hydraulic Proportional Valve for an Independent Metering Valve of Excavator (굴삭기 IMV용 비례전자밸브의 동특성)

  • Kang, Chang Nam;Yun, So Nam;Jeong, Hwang Hoon;Kim, Moon Gon
    • Journal of Drive and Control
    • /
    • v.15 no.2
    • /
    • pp.46-51
    • /
    • 2018
  • Many research studies have been carried out related to saving energy and environmental pollution in the field of construction machinery. The best solution for reducing the related environmental pollution is to reduce fuel consumption by upgrading the energy efficiency of machinery used in this field. An efficiency upgrade in the field of construction machinery would mean minimizing the pressure loss in hydraulic pipe lines or achieving optimal operating conditions while responding to a load. One way to achieve this is to make an equivalent circuit, like an electrohydrostatic actuator, or to improve the spool type valve using the 4/3 way method. This study deals with an electrohydraulic proportional flow control valve. SimulationX software is used as a simulation tool for analyzing the dynamic characteristics. The analysis results, including the performance and characteristics of design parameters, are discussed and the validity of the theoretical analysis is also evaluated.

Root System Development of Rice in Different Soil Moisture Conditions in Uganda Field.

  • Hatanaka, Keisuke;Shin, Yabuta;Minoru, Yoshino;Miyamoto, Kisho;Jun-Ichi, Sakagami
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.21-21
    • /
    • 2019
  • Approximately 80% of rice field in Africa conducts in rainfed (Nishimaki 2017). The rice is damaged by water stress because fields like rainfed lowland repeat drying and humidity of soil because of impossible water control. Then water stress is one of the major limiting factors for decreasing rice yield. So, in initial growth stage, quick and efficient root development is useful way to avoid drought stress by getting water from deeper soil layer with roots elongation as the hypothesis. Daniel et al (2016) reported that NERICA1 and NERICA4 show different patterns of root plasticity for drought stress. NERICA1 has greater development of lateral root in shallow soil layer, while NERICA4 has greater development in deep root elongation to underground. This study was aimed to evaluate the effect of root development in initial growth stage on growing NERICA1 and NERICA4 under different soil moisture condition in rainfed lowland rice field. They were grown in same water condition until 35 days after sowing (35DAS), and after that each varieties were separated in dry and wet condition. The rice plants were grown until 60DAS. The results of soil moisture, the root extension angle, shoot dry weight and bleeding ratio showed that NERICA4 can mitigate dry stress from surface soil compered to NERICA1.

  • PDF

A Research of the Flow-Field Measurement Above the Flight Deck on LHP by PIV System (입자영상유속계를 이용한 대형수송함(LPH) 갑판 상부의 유동장 측정 연구)

  • Shim, Hojoon;Chung, Jindeog;Cho, Taehwan;Lee, Seunghoon;Song, Gisu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.225-234
    • /
    • 2022
  • The flow field measurement above whole area of the flight deck on 'Landing Platform Helicopter (LPH)' was performed by using PIV system in wind tunnel. In various heading angle conditions (0deg, -30deg, -45deg, -60deg, -75deg and ±90deg), the velocity fields such as U velocity & V velocity were measured at three different height above flight deck. Due to the geometrical characteristics of several bodies like deck, crane and super-structure, various vortex were generated. When the heading angle is 0deg, the deck edge vortex by flight deck and massive separation by super-structure were clearly observed by visualization with smoke and PIV, respectively. In other heading angles, the acceleration of flow in space between crane and super-structure were detected. And area with flow separation by super-structure is directly related to the heading angle of vessel.

Analysis of Cross-Section Shape Slope of Pillar for Vacuum Glazing according to the Screen Printing Parameters (스크린 인쇄 공정 변수에 따른 진공유리용 필러의 단면형상 기울기 분석)

  • Kim, Jae Kyung;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.43-48
    • /
    • 2012
  • The screen printing method is much used in the flat panel display field including the LCD, PDP, FED, organic EL, and etc. for forming the high precision micro-pattern. Also A number of studies of screen printing method has been conducted as the method for the cost down through the improvement of productivity. Because of being the dot printing method of the cylindrical shape not being the line printing method like the existing PDP barrier rib and phosphor, the pillar arrays using the screen printing method is deposited in the hemispherical type not being cylindrical shape in the existing printing process conditions. In this paper, the parameters were set on the screen printing device in order to deposit the cross-sectional shape with the cone or trapezoid shape of the pillar in depositing the pillars used the screen printing device for vacuum glazing. The cross-sectional shape slope of the pillar according to the parameters was measured. And analysis the effect of the screen printing process conditions on the cross-sectional shape slope of pillars based upon the result of being measured. The processing conditions were drawn to minimize the cross-sectional shape slope of pillar.

CFD simulations of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurements

  • Kuai, Le;Haan, Fred L. Jr.;Gallus, William A. Jr.;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.75-96
    • /
    • 2008
  • A better understanding of tornado-induced wind loads is needed to improve the design of typical structures to resist these winds. An accurate understanding of the loads requires knowledge of near-ground tornado winds, but observations in this region are lacking. The first goal of this study was to verify how well a CFD model, when driven by far field radar observations and laboratory measurements, could capture the flow characteristics of both full scale and laboratory-simulated tornadoes. A second goal was to use the model to examine the sensitivity of the simulations to various parameters that might affect the laboratory simulator tornado. An understanding of near-ground winds in tornadoes will require coordinated efforts in both computational and physical simulation. The sensitivity of computational simulations of a tornado to geometric parameters and surface roughness within a domain based on the Iowa State University laboratory tornado simulator was investigated. In this study, CFD simulations of the flow field in a model domain that represents a laboratory tornado simulator were conducted using Doppler radar and laboratory velocity measurements as boundary conditions. The tornado was found to be sensitive to a variety of geometric parameters used in the numerical model. Increased surface roughness was found to reduce the tangential speed in the vortex near the ground and enlarge the core radius of the vortex. The core radius was a function of the swirl ratio while the peak tangential flow was a function of the magnitude of the total inflow velocity. The CFD simulations showed that it is possible to numerically simulate the surface winds of a tornado and control certain parameters of the laboratory simulator to influence the tornado characteristics of interest to engineers and match those of the field.

Natural Ventilation Planning by Analysis on Air Velocity Property of a Traditional Korean House (한국 전통주거의 기류 분석을 통한 자연통풍 설계 연구)

  • 최윤정;김인선;허범팔
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2001.05a
    • /
    • pp.117-120
    • /
    • 2001
  • This study is a preliminary research to develop design principles for environmentally friendly housing. The purposes of study are to investigate the literatures related passive design for summer and theory of ventilation, to analyze the indoor airflow patterns in traditional Korean house during summer, and to propose the design factors for effective passive cooling system. The analysis for airflow patterns was focused on the ‘An bang’and the ‘Dae Chung’in the ‘An Chae’of a traditional house located in Seoul. Field measurements of air temperature and air velocity were carried out at 30 different measuring points with 8 different window-opening conditions. The measurements were taken on the hottest summer days in August 2000. It is concluded that from an environmentally friendly standpoint design factors to control indoor thermal environment by a passive cooling system during the summer are as follows; ceiling structure has thermal performance like a time-lag effect, optimum height and length of eaves which can prevent sunlight and divert airflow toward the sitting level, building arrangement acceptable the prevailing wind, strategic window arrangement which makes cross ventilation possible (especially north-south) at the sitting level, window opening condition which is possible to intersect two cross-ventilation stream at the main living areas, northward windows remaining in shade to create the air pressure difference, and planning building shape like a bracket that has optimum width and depth.

  • PDF

A Study on compressive behavior of laminated plates with initial delamination (박리가 발생된 적층평판의 압축 거동에 관한 연구)

  • Lee, Nam-Ju;Jo, Yong-Oug
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.167-174
    • /
    • 2016
  • Recently laminated plates like composite materials has been used in a various field to grow the specific strength of the composition. However, delamination area caused by barely visible impact damage has potential risk that it can raise buckling of the delaminated plate. Because it can interrupt compressive behavior of laminated plates and reduce their strength, the whole structure can't be constituted by these materials. Many studies assume that behavior of the delaminated plate which is in lamanated plates equals theoretical buckling but their actual motion doesn't coincide because of initial imperfections of materials like deflection, residual stress, eccentricity and so on. In this paper, we change laminated plates with initial delamination into a beam of rectangular cross section with the initial crack and analyze compressive behavior according to initial imperfections through finite element method(FEM). Consequently analysis results show that behavior of laminated plates involving delamination differs from ideal buckling of the delaminated plate in actual conditions and we can predict its motion through imperfections relationship.

  • PDF

Biological Constraints in Algal Biotechnology

  • Torzillo, Giuseppe;Pushparaj, Benjamin;Masojidek, Jiri;Vonshak, Avigad
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.338-348
    • /
    • 2003
  • In the past decade, considerable progress has been made in developing the appropriate biotechnology for microalgal mass cultivation aimed at establishing a new agro-industry. This review points out the main biological constraints affecting algal biotechnology outdoors and the requirements for making this biotechnology economically viable. One of them is the availability of a wide variety of algal species and improved strains that favorably respond to varying environmental conditions existing outdoors. It is thus just a matter of time and effort before a new methodology like genetic engineering can and will be applied in this field as well. The study of stress physiology and adaptation of microalgae has also an important application in further development of the biotechnology for mass culturing of microalgae. In outdoor cultures, cells are exposed to severe changes in light and temperature much faster than the time scale re-quired for the cells to acclimate. A better understanding of those parameters and the ability to rapidly monitor those conditions will provide the growers with a better knowledge on how to optimize growth and productivity. Induction of accumulation of high value products is associated with stress conditions. Understanding the physiological response may help in providing a better production system for the desired product and, at a later stage, give an insight of the potential for genetic modification of desired strains. The potential use of microalgae as part of a biological system for bioremediation/detoxification and wastewater treatment is also associated with growing the cells under stress conditions. Important developments in monitoring and feedback control of the culture behavior through application of on-line chlorophyll fluorescence technique are in progress. Understanding the process associated with those unique environmental conditions may help in choosing the right culture conditions as well as selecting strains in order to improve the efficiency of the biological process.