Browse > Article
http://dx.doi.org/10.5140/JASS.2020.37.2.85

Linear Instability and Saturation Characteristics of Magnetosonic Waves along the Magnetic Field Line  

Min, Kyungguk (Department of Astronomy and Space Science, Chungnam National University)
Liu, Kaijun (Department of Earth and Space Sciences, Southern University of Science and Technology)
Publication Information
Journal of Astronomy and Space Sciences / v.37, no.2, 2020 , pp. 85-94 More about this Journal
Abstract
Equatorial noise, also known magnetosonic waves (MSWs), are one of the frequently observed plasma waves in Earth's inner magnetosphere. Observations have shown that wave amplitudes maximize at the magnetic equator with a narrow extent in their latitudinal distribution. It has been understood that waves are generated from an equatorial source region and confined within a few degrees magnetic latitude. The present study investigates whether the MSW instability and saturation amplitudes maximize at the equator, given an energetic proton ring-like distribution derived from an observed wave event, and using linear instability analysis and particle-in-cell simulations with the plasma conditions at different latitudes along the dipole magnetic field line. The results show that waves initially grow fastest (i.e., with the largest growth rate) at high latitude (20°-25°), but consistent with observations, their saturation amplitudes maximize within ±10° latitude. On the other hand, the slope of the saturation amplitudes versus latitude revealed in the present study is not as steep as what the previous statistical observation results suggest. This may be indicative of some other factors not considered in the present analyses at play, such as background magnetic field and plasma inhomogeneities and the propagation effect.
Keywords
equatorial noise; magnetosonic waves; plasma instabilities; linear theory analysis; particle-in-cell simulations;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu K, Gary SP, Winske D, Excitation of magnetosonic waves in the terrestrial magnetosphere: particle-in-cell simulations, J. Geophys. Res. 116, A07212 (2011). https://doi.org/10.1029/2010JA016372
2 Liu K, Particle-in-cell simulations of particle energization in the auroral region, PhD Dissertation, Cornell University (2007).
3 Ma Q, Li W, Thorne RM, Angelopoulos V, Global distribution of equatorial magnetosonic waves observed by THEMIS, Geophys. Res. Lett. 40, 1895-1901 (2013). https://doi.org/10.1002/grl.50434   DOI
4 Mauk BH, Fox NJ, Kanekal SG, Kessel RL, Sibeck DG, et al., Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev. 179, 3-27 (2012). https://doi.org/10.1007/s11214-012-9908-y   DOI
5 Means JD, Use of the three-dimensional covariance matrix in analyzing the polarization properties of plane waves, J. Geophys. Res. 77, 5551-5559 (1972). https://doi.org/10.1029/JA077i028p05551   DOI
6 Meredith NP, Horne RB, Anderson RR, Survey of magnetosonic waves and proton ring distributions in the Earth's inner magnetosphere. J. Geophys. Res. 113, A06213 (2008). https://doi.org/10.1029/2007JA012975
7 Min K, Liu K, Fast magnetosonic waves driven by shell velocity distributions, J. Geophys. Res. Space Phys. 120, 2739-2753 (2015). https://doi.org/10.1002/2015JA021041   DOI
8 Min K, Liu K, Ion Bernstein instability dependence on the proton-to-electron mass ratio: linear dispersion theory, J. Geophys. Res. Space Phys. 121, 6692-6710 (2016). https://doi.org/10.1002/2016JA022850   DOI
9 Min K, Liu K, Gary SP, Scalings of Alfven-cyclotron and ion Bernstein instabilities on temperature anisotropy of a ring-like velocity distribution in the inner magnetosphere. J. Geophys. Res. Space Phys. 121, 2185-2193 (2016). https://doi.org/10.1002/2015JA022134   DOI
10 Min K, Liu K, Wang X, Chen L, Denton RE, Fast magnetosonic waves observed by Van Allen Probes: testing local wave excitation mechanism, J. Geophys. Res. Space Phys. 123, 497-512 (2018). https://doi.org/10.1002/2017JA024867   DOI
11 Perraut S, Roux A, Robert P, Gendrin R, Sauvaud JA, et al., A systematic study of ULF waves above FH+ / from GEOS 1 and 2 measurements and their relationships with proton ring distributions, J. Geophys. Res. Space Phys. 87, 6219-6236 (1982). https://doi.org/10.1029/JA087iA08p06219   DOI
12 Nemec F, Santolik O, Gereova K, Macusova E, de Conchy Y, et al., Initial results of a survey of equatorial noise emissions observed by the Cluster spacecraft, Planet. Space Sci. 53, 291-298 (2005). https://doi.org/10.1016/j.pss.2004.09.055   DOI
13 Nemec F, Santolik O, Gereova K, Macusova E, Laakso H, et al., Equatorial noise: statistical study of its localization and the derived number density, Adv. Space Res. 37, 610-616 (2006). https://doi.org/10.1016/j.asr.2005.03.025   DOI
14 Nemec F, Santolik O, Pickett JS, Hrbackova Z, Cornilleau-Wehrlin N, Azimuthal directions of equatorial noise propagation determined using 10 years of data from the Cluster spacecraft, J. Geophys. Res. Space Phys. 118, 7160-7169 (2013). https://doi.org/10.1002/2013JA019373   DOI
15 Posch JL, Engebretson MJ, Olson CN, Thaller SA, Breneman AW, et al., Low-harmonic magnetosonic waves observed by the Van Allen Probes, J. Geophys. Res. Space Phys. 120, 6230-6257 (2015). https://doi.org/10.1002/2015JA021179   DOI
16 Russell CT, Holzer RE, Smith EJ, OGO 3 observations of ELF noise in the magnetosphere: 2. the nature of the equatorial noise, J. Geophys. Res. 75, 755-768 (1970). https://doi.org/10.1029/JA075i004p00755   DOI
17 Santolik O, Nemec F, Gereova K, Macusova E, de Conchy Y, et al., Systematic analysis of equatorial noise below the lower hybrid frequency. Ann. Geophys. 22, 2587-2595 (2004). https://doi.org/10.5194/angeo-22-2587-2004   DOI
18 Shklyar DR, Balikhin MA, Whistler mode waves below lower hybrid resonance frequency: generation and spectral features, J. Geophys. Res. Space Phys. 122, 10072-10083 (2017). https://doi.org/10.1002/2017JA024416   DOI
19 Sun J, Gao X, Lu Q, Chen L, Tao X, et al., A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. II. Particle-in-cell simulations, Phys. Plasmas. 23, 022902 (2016). https://doi.org/10.1063/1.4941284   DOI
20 Sun J, Gao X, Lu Q, Chen L, Liu X, et al., Spectral properties and associated plasma energization by magnetosonic waves in the Earth's magnetosphere: particle-in-cell simulations, J. Geophys. Res. Space Phys. 122, 5377-5390 (2017). https://doi.org/10.1002/2017JA024027   DOI
21 Walker SN, Balikhin MA, Shklyar DR, Yearby KH, Canu P, et al., Experimental determination of the dispersion relation of magnetosonic waves, J. Geophys. Res. Space Phys. 120, 9632-9650 (2015). https://doi.org/10.1002/2015JA021746   DOI
22 Xiao F, Feng X, Modeling density and anisotropy of energetic electrons along magnetic field lines, Plasma Sci. Technol. 8, 279-284 (2006). https://doi.org/10.1088/1009-0630/8/3/07   DOI
23 Xiao F, Zhou Q, He Z, Tang L, Three-dimensional ray tracing of fast magnetosonic waves, J. Geophys. Res. Space Phys. 117, A06208 (2012). https://doi.org/10.1029/2012JA017589
24 Xiao F, Zhou Q, He Z, Yang C, He Y, et al., Magnetosonic wave instability by proton ring distributions: simultaneous data and modeling, J. Geophys. Res. Space Phys. 118, 4053-4058 (2013). https://doi.org/10.1002/jgra.50401   DOI
25 Xie H, BO: a unified tool for plasma waves and instabilities analysis, Comput. Phys. Commun. 244, 343-371 (2019). https://doi.org/10.1016/j.cpc.2019.06.014   DOI
26 Santolik O, Parrot M, Lefeuvre F, Singular value decomposition methods for wave propagation analysis, Radio Sci. 38, 1010 (2003). https://doi.org/10.1029/2000RS002523
27 Arfken GB, Mathematical Methods for Physicists, 3rd ed. (Academic Press, Orlando, FL, 1985).
28 Yuan Z, Yao F, Yu X, Huang S, Ouyang Z, An automatic detection algorithm applied to fast magnetosonic waves with observations of the Van Allen Probes, J. Geophys. Res. Space Phys. 124, 3501-3511 (2019). https://doi.org/10.1029/2018JA026387   DOI
29 Zou Z, Zuo P, Ni B, Wei F, Zhao Z, et al., Wave normal angle distribution of fast magnetosonic waves: a survey of Van Allen Probes EMFISIS observations, J. Geophys. Res. Space Phys. 124, 5663-5674 (2019). https://doi.org/10.1029/2019JA026556   DOI
30 Andre R, Lefeuvre F, Simonet F, Inan US, A first approach to model the low-frequency wave activity in the plasmasphere, Ann. Geophys. 20, 981-996 (2002). https://doi.org/10.5194/angeo-20-981-2002   DOI
31 Balikhin MA, Shprits YY, Walker SN, Chen L, Cornilleau-Wehrlin N, et al., Observations of discrete harmonics emerging from equatorial noise, Nat. Commun. 6, 7703 (2015). https://doi.org/10.1038/ncomms8703   DOI
32 Boardsen SA, Gallagher DL, Gurnett DA, Peterson WK, Green JL, Funnel-shaped, low-frequency equatorial waves, J. Geophys. Res. 97, 14967-14976 (1992). https://doi.org/10.1029/92JA00827   DOI
33 Boardsen SA, Hospodarsky GB, Kletzing CA, Engebretson MJ, Pfaff RF, et al., Survey of the frequency dependent latitudinal distribution of the fast magnetosonic wave mode from Van Allen Probes electric and magnetic field instrument and integrated science waveform receiver plasma wave analysis, J. Geophys. Res. Space Phys. 121, 2902-2921 (2016). https://doi.org/10.1002/2015JA021844   DOI
34 Boardsen SA, Hospodarsky GB, Min K, Averkamp TF, Bounds SR, et al., Determining the wave vector direction of equatorial fast magnetosonic waves, Geophys. Res. Lett. 45, 7951-7959 (2018). https://doi.org/10.1029/2018GL078695   DOI
35 Bortnik J, Omidi N, Chen L, Thorne RM, Horne RB, Saturation characteristics of electromagnetic ion cyclotron waves, J. Geophys. Res. 116, A09219 (2011). https://doi.org/10.1029/2011JA016638
36 Chen L, Thorne RM, Jordanova VK, Horne RB, Global simulation of magnetosonic wave instability in the storm time magnetosphere, J. Geophys. Res. Space Phys. 115, A11222 (2010). https://doi.org/10.1029/2010JA015707
37 Bortnik J, Thorne RM, Transit time scattering of energetic electrons due to equatorially confined magnetosonic waves, J. Geophys. Res. 115, A07213 (2010). https://doi.org/10.1029/2010JA015283
38 Chen L, Maldonado A, Bortnik J, Thorne RM, Li J, et al., Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons, J. Geophys. Res. Space Phys. 120, 6514-6527 (2015). https://doi.org/10.1002/2015JA021174   DOI
39 Chen L, Sun J, Lu Q, Wang X, Gao X, et al., Two-dimensional particle-in-cell simulation of magnetosonic wave excitation in a dipole magnetic field, Geophys. Res. Lett. 45, 8712-8720 (2018). https://doi.org/10.1029/2018GL079067   DOI
40 Fu X, Cowee MM, Jordanova VK, Gary SP, Reeves GD, et al., Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions, J. Geophys. Res. Space Phys. 121, 10954-10965 (2016). https://doi.org/10.1002/2016JA023303   DOI
41 Gao X, Liu K, Wang X, Min K, Lin Y, et al., Gyrokinetic electron and fully kinetic ion simulations of fast magnetosonic waves in the magnetosphere, Phys. Plasmas. 24, 062901 (2017). https://doi.org/10.1063/1.4985303   DOI
42 Gul'elmi AV, Klaine BI, Potapov AS, Excitation of magnetosonic waves with discrete spectrum in the equatorial vicinity of the plasmapause, Planet. Space Sci. 23, 279-286 (1975). https://doi.org/10.1016/0032-0633(75)90133-6   DOI
43 Gurnett DA, Plasma wave interactions with energetic ions near the magnetic equator, J. Geophys. Res. 81, 2765-2770 (1976). https://doi.org/10.1029/JA081i016p02765   DOI
44 Kasahara Y, Kenmochi H, Kimura I, Propagation characteristics of the ELF emissions observed by the satellite Akebono in the magnetic equatorial region, Radio Sci. 29, 751-767 (1994). https://doi.org/10.1029/94RS00445   DOI
45 Horne RB, Thorne RM, Glauert SA, Meredith NP, Pokhotelov D, et al., Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves, Geophys. Res. Lett. 34, L17107 (2007). https://doi.org/10.1029/2007GL030267   DOI
46 Horne RB, Wheeler GV, Alleyne HSCK, Proton and electron heating by radially propagating fast magnetosonic waves, J. Geophys. Res. 105, 27597-27610 (2000). https://doi.org/10.1029/2000JA000018   DOI
47 Hrbackova Z, Santolik O, Nemec F, Macusova E, Cornilleau-Wehrlin N, Systematic analysis of occurrence of equatorial noise emissions using 10 years of data from the Cluster mission, J. Geophys. Res. Space Phys. 120, 1007-1021 (2015). https://doi.org/10.1002/2014JA020268   DOI
48 Laakso H, Junginger H, Schmidt R, Roux A, de Villedary C, Magnetosonic waves above $f_c(H^+)$ at geostationary orbit:GEOS 2 results, J. Geophys. Res. 95, 10,609-10,621 (1990). https://doi.org/10.1029/JA095iA07p10609   DOI
49 Li X, Tao X, Lu Q, Dai L, Bounce resonance diffusion coefficients for spatially confined waves, Geophys. Res. Lett. 42, 9591-9599 (2015). https://doi.org/10.1002/2015GL066324   DOI