• 제목/요약/키워드: Field wall

검색결과 1,608건 처리시간 0.027초

자기촉매 특성을 이용한 탄소나노튜브의 연소합성 연구 (Combustion synthesis of carbon nanotubes using their self-catalytic behavior)

  • 우상길;홍영택;권오채
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1815-1820
    • /
    • 2008
  • Self-catalytic behavior of combustion-synthesized carbon nanotubes (CNTs) is evaluated using a double-faced wall stagnation flow burner with a CNT-deposited stainless steel plate wall. CNT formation is observed using field-emission scanning and transmission electron microscopies and Raman spectroscopy. A self-catalytic behavior of multi-walled CNTs (MWCNTs) shows the enhanced ratio of channel diameter to tube wall thickness and the enhanced intensity ratio of G-band to D-band in Raman spectroscopy, implying that the quality of metal-catalytic, flame-synthesized MWCNTs can be much improved via a CNT self-catalytic flame-synthesis process. Thus, using a DWSF burner through the self-catalytic process has potential in mass production of CNTs having much improved quality.

  • PDF

벽면조건에 의한 미소관내 화염 전파 특성 변화에 관한 수치해석 (A numerical study on the characteristics of flame propagation in small tubes under various boundary conditions)

  • 김남일;카오루마루타
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.32-38
    • /
    • 2006
  • A premixed flame propagating in a tube suffers strong variation in its shape and structure depending on boundary conditions. The effects of thermal boundary conditions and flow fields on flame propagation are numerically investigated. Navier-Stokes equations and species equations are solved with a one-step irreversible global reaction model of methane-air mixture. Finite volume method using an adaptive grid method is applied to investigate the flame structure. In the case of an adiabatic wall, friction force on the wall significantly affected the flame structure while in the case of an isothermal wall, local quenching near the wall dominated flame shapes and propagation. In both cases, variations of flow fields occurred not only in the near field of the flame but also within the flame itself, which affected propagation velocities. This study provides an overview of the characteristics of flames in small tubes at a steady state.

  • PDF

상계해법과 유한요소법을 이용한 스피닝공정 해석에 관한 연구 (A study on the process of tube end spinning by the upper bound method and the finite element method)

  • 김전형;홍성인;이정환;이영선
    • 소성∙가공
    • /
    • 제6권6호
    • /
    • pp.517-526
    • /
    • 1997
  • The purpose of this study is to investigate changes in the wall thickness of tube sinking and working forces by the upper bound method and ABAQUS code. The independent variables are ; workpiece material, original wall thickness of tube, die angle, friction, and reduction of diameter. The results indicate that these five variables are factors of the increase in wall-thickness and working forces. Three variables, a inner tube wall angle and two angles of the velocity discontinuous surfaces, are optimized in this proposed velocity field by the upper bound method. In this method, we can estimate the working forces and final tube thicknesses similar to actual forming process. Optimum process variables which are obtained by upper bound method are used in ABAQUS pre-model.

  • PDF

波形壁 流路내에서 凝縮이 수반되는 超音速유동에 대한 硏究 (The Study of Supersonic Flow with Condensation Along a Wavy Wall in a Channel)

  • 권순범;김병지;김흥균
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.424-431
    • /
    • 1994
  • The characteristics of supersonic flow with condensation along a wavy wall of a small Smplitude in a channel is investigated experimentally and numerically. In the present study for the case of supersonic moist air flow, the dependency of location of reflection of oblique shock wave generated by the wavy wall, and the distributions of flow properties in the flow field, on the stagnation relative humidity and temperature is clarified by the plots of streamline, iso-Mach number and iso-flow properties of numerical result and the schlieren photographs of experiment. And. experimental and numerical results are in good agreement.

Numerical simulation of slit wall effect on the Taylor vortex flow with radial temperature gradient

  • Liu, Dong;Chao, Chang-qing;Zhu, Fang-neng;Han, Xi-qiang;Tang, Cheng
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권4호
    • /
    • pp.304-310
    • /
    • 2015
  • Numerical simulation was applied to investigate the Taylor vortex flow inside the concentric cylinders with a constant radial temperature gradient. The reliability of numerical simulation method was verified by the experimental results of PIV. The radial velocity and temperature distribution in plain and 12-slit model at different axial locations were compared, and the heat flux distributions along the inner cylinder wall at different work conditions were obtained. In the plain model, the average surface heat flux of inner cylinder increased with the inner cylinder rotation speed. In slit model, the slit wall significantly changed the distribution of flow field and temperature in the annulus gap, and the radial flow was strengthen obviously, which promoted the heat transfer process at the same working condition.

분리형 보강토공법의 고속도로 적용사례 (A Case Study on the Discrete Segmental Retaining Wall in Highway Construction)

  • 노한성;최영철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.337-344
    • /
    • 2001
  • The application of mechanically stabilized earth wall(MSEW) with segmental front panel has been increasing in highway construction due to its cost-effectiveness. However, some failures during construction have been reported and many field engineers are reluctant to select this method for important structure. One of the main reasons may be that there is no moderate specification for design and construction of MSEW yet. This paper discussed the main results of analysis on a case of block-type segmental retaining wall in highway construction. Based on the results, some recommendations on design and construction method of MSEW are presented.

  • PDF

강봉으로 보강된 프리캐스트 프리스트레스 옹벽의 동적 안정성 평가 (Evaluation of Dynamic Stability for Precast and Prestressed Wall reinforced by Steel Pipe)

  • 이일화;이수형;최찬용;금창준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.381-386
    • /
    • 2006
  • The advantages of precast production are fast construction, reduction of labor and insurance of good quality. In recently, the application of the precast production is increased in the earth retaining wall field. This paper presents the results of the numerical modelling that was carried out to evaluate the stability of precast and prestressed earth retaining wall under dynamic train loading. The two-dimensional explicit dynamic finite element method (ABAQUS) was used to carry out the numerical analyses. The train loading to act track is calculated by using the real measured phase angle data. Mainly, the displacement and acceleration of wall structure in time domain analyzed to evaluate the stability under the dynamic train load.

  • PDF

느슨한 모래지반(地盤)에서 앵커로 지지(支持)된 널말뚝의 배면지반침하(背面地盤沈下) (Settlement of Ground Surface behind Anchored Sheet-Piles in Loose Sand)

  • 천병식;강인성
    • 대한토목학회논문집
    • /
    • 제10권1호
    • /
    • pp.145-153
    • /
    • 1990
  • 본(本) 연구(硏究)는 굴착에 따른 지반심하(地盤沈下)와 벽변형(壁變形)의 관계를 규명하고자 느슨한 모래 지반(地盤)에서 앵커로 지지(支持)된 널말뚝의 모형실험(模型實險)을 한 것이다. 실험(實驗)에 고려된 요소로는 널말뚝의 하단구속(下端狗束), 앵커의 경사각(傾斜角), 널말뚝의 강성(剛性), 굴착단계(段階)이며 실험결과(實驗結果)는 기존의 이론(理論)과 버팀대로지지(支持)된 토류벽(土留壁)의 현장계측결과(現場計測結果)와 비교되었다. 분석결과(分析結果)는 일단(一段)의 앵커로 지지(支持)된 널말뚝의 지반침하(地盤沈下)를 예상하는 데에 이용될 수 있는 회귀식(回歸式)으로 나타냈고, 굴착으로 인한 벽변형(壁變形)과 지반침하(地盤沈下)는 굴착변의 지지방법(支持方法)에 따라 차이가 크다는 것을 확인하였다.

  • PDF

토사지반에 설치된 역 T형 옹벽의 저판형상이 활동거동에 미치는 영향 (Effects of Base Shape of Cantilever Retaining Wall in Soil Foundation on the Sliding Behavior)

  • 유남재;이명욱;김영길;이종호
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.135-145
    • /
    • 1999
  • This thesis is to investigate the sliding behavior of cantilever retaining wall by using the commercially available program of FLAC to simulate its behavior numerically. Cantilever retaining walls with flat base, sloped base and base with shear key, uniform surcharges being applied on the surface of backfill, were investigated to figure out appropriate location of shear key beneath the base of wall and, thus, its applicability to field condition was assessed by comparing the analyzed results to each other. On the other hand, previously performed centrifuge model test results (Eum, 1996) were analyzed numerically with FLAC to compare test results with respect to characteristics of load-settlement of surcharges and load-lateral movement of wall. Based on the failure mechanism observed during centrifuge tests, limit equilibrium method of finding the ultimate load inducing the sliding failure of wall was used to compare with values of the ultimate load obtained from conventional method of limit equilibrium method. Therefore, appropriate location of shear key was determined to mobilize the maximum resistance against sliding failure of wall.

  • PDF

Wavenumber analyses of panel vibrations induced by transonic wall-bounded jet flow from an upstream high aspect ratio rectangular nozzle

  • Hambric, Stephen A.;Shaw, Matthew D.;Campbell, Robert L.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권6호
    • /
    • pp.515-528
    • /
    • 2019
  • The structural vibrations of a flat plate induced by fluctuating wall pressures within wall-bounded transonic jet flow downstream of a high-aspect ratio rectangular nozzle are simulated. The wall pressures are calculated using Hybrid RANS/LES CFD, where LES models the large-scale turbulence in the shear layers downstream of the nozzle. The structural vibrations are computed using modes from a finite element model and a time-domain forced response calculation methodology. At low flow speeds, the convecting turbulence in the shear layers loads the plate in a manner similar to that of turbulent boundary layer flow. However, at high nozzle pressure ratio discharge conditions the flow over the panel becomes transonic, and the shear layer turbulence scatters from shock cells just downstream of the nozzle, generating backward traveling low frequency surface pressure loads that also drive the plate. The structural mode shapes and subsonic and transonic surface pressure fields are transformed to wavenumber space to better understand the nature of the loading distributions and individual modal responses. Modes with wavenumber distributions which align well with those of the pressure field respond strongly. Negative wavenumber loading components are clearly visible in the transforms of the supersonic flow wall pressures near the nozzle, indicating backward propagating pressure fields. In those cases the modal joint acceptances include significant contributions from negative wavenumber terms.