• Title/Summary/Keyword: Field slopes

Search Result 311, Processing Time 0.024 seconds

Use of the Risk Score for the Effective Management of Cut Slopes (효율적인 절토사면 관리를 위한 위험도 점수 활용에 관한 연구)

  • Kim, Jin-Hwan;Baek, Yong;Koo, Ho-Bon;Park, Keun-Bo
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.223-231
    • /
    • 2012
  • Many cut slopes are located near national highways, resulting in large annual damage to infrastructure from the collapse of cut slopes. Therefore, to effectively maintain cut slopes, high-risk slopes should be identified and monitored. In this paper, we evaluate the effectiveness of the management of cut slopes using the risk score calculated from cut-slope inventory data. The inventory survey, as a simple assessment of the characteristics of various slopes, was performed to collect basic data that could be obtained visually in the field for the management of cut slopes. This method is not a precise survey, and it was composed of the general status and characteristics of cut slopes, the inspector's assessment, and inventory data in order to estimate a risk score for each slope. In this paper, we calculated the risk score by investigating the present status of cut slopes adjacent to 10,461 national roads. In order to evaluate the effectiveness of using risk score data, we compared the score for stable slopes with those of failed cut slopes. Failed cut slopes occurred in sections with the highest risk score. The results show that risk score derived from the inventory survey of cut slopes are useful in the management of cut slopes with risk of failure and in monitoring large numbers of cut slopes.

Slope stability study of an open pit gold mine project in interior Alaska

  • Huang Scott L.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.72-77
    • /
    • 2003
  • The study tasked by Ryan Lode Mines, Inc. involved analysis of pit slope stability for two future pits, Ryan and Curlew. A geological discontinuity survey and groundwater information were obtained through a field program. Twenty core logs containing geotechnical information were used for rock mass classification. The kinematic analysis was performed based on a friction angle (${\Phi}=35^{\circ}$), the distribution of geological structures, and a dry slope condition. Factors of safety of pit slopes in two future mines were determined using the limit equilibrium method. The mine slopes and benches designed by Mine Development Associates (MDA) were analyzed. The analysis indicated that both pits should have an overall safety factor above 1.0, provided the slopes are kept dry. However, slopes in both pits exceeding 91.4 m (300 ft) high will become critical, when water fills the cracks and discontinuities.

  • PDF

Development of an Improved Inspection System for Slopes adjacent to Educational Facilities (개선된 교육시설 인접 사면 점검체계 구축)

  • Ko, Jun-Young;Lee, Joon-Kyu;Park, Ku-Byoung;Lee, Byoung-Ho;Kim, Jae-Young
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.28 no.4
    • /
    • pp.3-10
    • /
    • 2021
  • This study presents an improved inspection system for slopes adjacent to educational facilities. For this, field investigations for 5 schools and 3 universities were performed to analyze the engineering stability of infrastructures, which ensure the safety of students and educational officers. Educational laws and the relevant enforcement are reviewed to understand the problems of current laws and enforcement. The results reveal that the engineering measures and reinforcement are required for the slopes of 36%. Also, the improvement of social awareness and regular inspection is needed to maintain the educational infrastructures. The suggested inspection system includes the fundamental and detailed checklists and guidance for non-engineering specialists.

Emergency and Permanent Repair Technology for Damaged Road Bases and Slopes using Gravel-Netting Concrete (도로 및 비탈면 유실 항구적 긴급복구를 위한 골재망 콘크리트 활용기술 개발)

  • Kim, Yongjae;Jung, Haekook;Kim, Seungwon;Park, Cheolwoo
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.9-17
    • /
    • 2018
  • PURPOSES : The frequency and severity of natural disasters such as torrential rain or typhoons have become increasingly significant worldwide. Events such as summer typhoons and localized torrential downpour can cause severe damages to a residential area and road networks, resulting in serious harm to the daily lives of people, especially in rural areas by isolating residents from road networks. An immediate and emergency repair technology for the collapsed road networks is urgently needed. This study introduces a new technology to repair road bases or slopes. METHODS : The development of new technology for emergency and permanent repair consists of first, packing of cement paste-coated gravel, second, combining appropriate equipment, and third, conducting a field applicability test. In this research, the compressive strength of cement pastecoated gravel, gravel-netting concrete properties, and packing efficiency were determined, and a full scale field mock-up test was carried out. RESULTS : The compressive strength of the cement paste-coated gravel concrete satisfied the required limit for road base of 5 MPa after 7 days. With appropriate netting materials and packing size, gravel-netting concrete was successful up to a slope of 1:1.5. The full scale field mock-up test showed efficiency in the field and penetration resistance performance. CONCLUSIONS : The new technology of emergency and permanent repair for damaged road bases and slopes, introduced in this study, showed satisfactory performance. The technology is expected to be applied in the field when construction procedures and quality specifications are made.

In Case of Treatment of PEC4 Hydroseeding Measures for Revegetation of Rock Cut-Slopes (암비탈면 녹화용 환경친화적 PEC4 공법의 시공)

  • Kim, Kyung-Hoon;Kim, Hak-Young;Hwang, Ae-Min;Lee, Seung-Eun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.4
    • /
    • pp.64-73
    • /
    • 1999
  • This study was conducted to find out the effects of hydroseeding material and seed mixture on the revegetation of rock cut-slopes by PEC4 (Polymer-Ecology-Control) Hydroseeding Measures. PEC4 hydroseeding material was applied to four cut-slopes using hydroseeding measures from April to August, 1999, and the field survey was carried out by monthly. PEC4 material consisted of bark compost and organic soil amendments. This material has high content of organic matter and high level of water holding capacity. PEC4 hydroseeding material shows low level of soil hardness, so it gives to good condition for seed germinating and plant growing in early stage. PEC4 material attached at rock cut-slopes by two types of adhesive agent was not eroded by rainfall. The plant coverage and number of plant species were affected by mixing ratio of seeds and seeding timing. From the viewpoint of plant establishment, the optimal hydroseeding timing of mixed seeds for plant growth seems to be in May. Most of the plant seeds were germinated well and they covered rock cut-slopes so quickly and effectively. Plant importance value of Silene armeria and Platycodon grandiflorum. were higher than any other seeded-native species in the competition between native species and exotic species, so they have enough possibility to be used for slope revegetation works. Thus it leads to conclusion that the revegetation method used in this experiment was a very effective method for plant establishment on rock cut-slopes.

  • PDF

Distribution of the Wetness Index and Field Characteristics of Talus Slopes in the Jungsun Area, Gangwon Province (강원도 정선 지역 테일러스 사면의 습윤지수 및 현장 특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Rhee, Jong-Hyun;Kim, Sung-Wook;Choi, Eun-Kyeong
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.391-399
    • /
    • 2010
  • We performed a hydraulic analysis based on the wetness index of talus slopes in Jungsun, Gangwon province. We estimated the relation between the degree of development of the temporary water system, and talus topography and distribution. We also assessed the distribution of talus based on a map of the wetness index. We divided areas of tallus into stable and unstable types, and estimated the size, distribution and shape-preferred orientation of clasts. We performed numerical simulations of rockfall events to assess the optimum location of rockfall barriers upon talus slopes.

Design Forces Acting on Geosynthetics in Landfills (매립장 사면에 설치된 토목섬유의 설계 인장강도 산정)

  • 정문경;김강석;우제윤;류찬희
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.407-414
    • /
    • 2000
  • This paper presents measured deformation of geomembrane installed on slopes of a landfill. The layout of geosynthetics installed on landfill slopes as required by regulations is composed of, in typical, geocomposite, geomembrane, geosynthetic clay liner in turn from the slope. An effort was made to better understand the sources of external forces acting on geosynthetics and their interactions. The results of a field observation indicated that tensile stresses induced on geomebrane were far less in magnitude than predicted by the design method employing mass equilibrium of waste. This was mainly because external forces acting on slopes were not transferred from geocomposite to underlying geomembrane. A simple, but rather rational method for assessing the stability of geosynthetics against tensile stresses was proposed. This method is based on a hypothesis that external forces acting on geosynthetics are the results of downdrag of waste during waste compaction.

  • PDF

Reinforcing effect of vetiver (Vetiveria zizanioides) root in geotechnical structures - experiments and analyses

  • Islam, Mohammad S.;Shahin, Hossain M.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.313-329
    • /
    • 2013
  • Vetiver grass (Vetiveria zizanioides) is being effectively used in many countries to protect embankment and slopes for their characteristics of having long and strong roots. In this paper, in-situ shear tests of the ground with the vetiver roots have been conducted to investigate the stabilization properties corresponding to the embankment slopes. Numerical analyses have also been performed with the finite element method using elastoplastic subloading $t_{ij}$ model, which can simulate typical soil behavior. It is revealed from field tests that the shear strength of vetiver rooted soil matrix is higher than that of the unreinforced soil. The reinforced soil with vetiver root also shows ductile behavior. The numerical analyses capture well the results of the in-situ shear tests. Effectiveness of vetiver root in geotechnical structures-strip foundation and embankment slope has been evaluated by finite element analyses. It is found that the reinforcement with vetiver root enhances the bearing capacities of the grounds and stabilizes the embankment slopes.

Development of a Mobile System for Investigating and Maintaining Steep Slopes (급경사지 유지관리 및 피해조사를 위한 Mobile System 개발)

  • Song, Young-Karb;Kim, Tai-Hoon;Oh, Jeong-Rim;Son, Young-Jin
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.185-194
    • /
    • 2012
  • The efficient maintenance and management of steep slopes often require excessive professional resources and quantitative investigations. Therefore, it is important to develop technology for objective scientific site investigations and quantitative evaluations of steep slopes. This study proposes a 'Mobile System' for steep slopes in order to improve the effectiveness of site investigations compared with conventional methods using anevaluati on table. By analyzing site investigations and desktop studies, the required software and hardware are identified to develop the 'Mobile System', consisting of a 'Field Information Input System' and an 'Analysis System'. The applicability of the system is verified by its application to an area with steep slopes affected by debris flows. The use of this system is expected to increase the efficiency of maintaining steep slope sand to reduce the time and resources required.