• Title/Summary/Keyword: Field simulation

Search Result 5,650, Processing Time 0.036 seconds

Event-Driven Real-Time Simulation Based On The RM Scheduling and Lock-free Shared Objects

  • Park, Hyun Kyoo
    • 한국국방경영분석학회지
    • /
    • 제25권1호
    • /
    • pp.199-214
    • /
    • 1999
  • The Constructive Battle Simulation Model is very important to the recent military training for the substitution of the field training. However, real battlefield systems operate under real-time conditions, they are inherently distributed, concurrent and dynamic. In order to reflect these properties by the computer-based simulation systems which represent real world processes, we have been developing constructive simulation model for several years. Conventionally, scheduling and resource allocation activities which have timing constraints, we elaborated on these issues and developed the simulation system on commercially available hardware and operating system with lock-free resource allocation scheme and rate monotonic scheduling.

  • PDF

GPS를 활용한 교통 시뮬레이션 모형 검증 (A Traffic Simulation Model Verification Method Using GPS Equipment)

  • 허혜정;백종대;한상진
    • 한국ITS학회 논문지
    • /
    • 제11권5호
    • /
    • pp.62-69
    • /
    • 2012
  • 교통 시뮬레이션 모형은 실제 교통 네트워크를 모형으로 구현하여 여러 가지 교통정책을 평가하는 데에 사용된다. 이때 모형이 실제의 교통현상을 잘 반영했는지 여부를 판단하는 모형 검증 절차는 가장 중요한 절차 중 하나이며 모형 검증에는 실측 교통량과 속도 등이 주로 사용된다. 본 연구에서는 노스캐롤라이나 랄리에 있는 I-40 고속도로 상에서 일어나는 심각한 오후 첨두 병목현상을 DYNASMART-P라는 메조스코픽 교통 시뮬레이션 모형으로 구현한 결과를 검증하고자 하였다. 연구 대상 축의 경우 노스캐롤라이나 교통국(NCDOT)의 교통정보센타에서 속도검지기를 설치하여 온라인으로 속도를 수집하고 있다. 그러나 검지기 측정 자료는 지점속도이고 시뮬레이션 모형의 결과값은 링크 평균속도이므로 모형 검증에 사용하기에는 적합하지 않다. 따라서, 본 연구에서는 GPS 장비를 활용하여 통행시간을 측정하여 모형에서의 통행시간과 비교함으로써 시뮬레이션 모형의 결과를 검증하였다. 이 논문에서는 데이터 수집, 모형검증 절차 및 결과를 서술하였다.

$SF_6$아크의 절연회복특성 해석 (Analysis Of Dielectric Recovery Characteristics for $SF_6$ Gas-Blast AFC)

  • 송기동;이병윤;박경엽;박정후
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권6호
    • /
    • pp.273-284
    • /
    • 2002
  • In this paper, computer simulations of the physical Phenomena occurring in the arc region before and after current zero were carried out to evaluate the dielectric recovery characteristics of two types of double-flow nozzles. A commercial CFD Program "PHOENICS" is used for the simulation and the user-coded subroutines to consider the arcing phenomena were added to this program by the authors. The computed results were verified by the comparison with the test results presented by the research group of BBC. In order to investigate the state of the arc region after current zero, the simulation was carried out with four steps. They are cold gas flow analysis, steady state arc simulation, transient arc simulation before current zero, transient hot gas flow simulation after current zero. The semi-experimental arc radiation model is adapted to consider the radiation energy transport and Prandtl′s mixing length model is employed as the turbulence model. The electric field and the magnetic field were calculated with the same grid structure used for the simulation of the flow field. The streamer criterion was introduced to evaluate the dielectric recovery characteristics after current zero. Compared with the results obtained by assuming the current zero state in the former studies, it has been found that the results obtained by considering the state before current zerowere more accurate.

Laval Nozzle에 대한 $SF^6$ 아크의 열적회복특성 해석 (Analysis of Thermal Recovery Characteristics for $SF^6$ Gas-Blast Arc within Laval Nozzle)

  • 송기동;이병윤;박경엽;박정후
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권9호
    • /
    • pp.522-529
    • /
    • 2002
  • In this paper, computer simulations of the physical Phenomena occurring in the arc region before and after current zero were carried out to evaluate the thermal recovery characteristics of a Laval nozzle. A commercial CFD program "PHOENICS" is used for the simulation and the user-coded subroutines to consider the arcing phenomena were added to this program by the authors. The computed results were verified by the comparison with the test results presented by the research group of GE Co.(General Electric Company). In order to investigate the state of the arc region after current zero, the simulation was carried out with three steps. They are steady state arc simulation, transient arc simulation before current zero, and transient hot-gas flow simulation after current zero. The semi-experimental arc radiation model is adapted to consider the radiation energy transport and Prandtl's mixing length model is employed as the turbulence model. The electric field and the magnetic field were calculated with the same grid structure used for the simulation of the flow field. The post-arc current was calculated to evaluate the thermal recovery characteristics after current zero. Compared with the results obtained by GE Co., it has been found that the critical RRRV(ratio of rise of recovery voltage) will be determined previously by this study.his study.

웹상에 분산되어 있는 시뮬레이션 객체들의 통합에 의한 시뮬레이션 모델링 방법론 (A Simulation Modeling Methodology by Integrating Distributed Simulation Objects on the Web)

  • 심원보;이영해
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1999년도 추계학술대회 논문집
    • /
    • pp.325-330
    • /
    • 1999
  • Web-based simulation is one of the most interesting field of simulation research today. Among many research area of web-based simulation, we concern about what a effective way of building simulation model is since creating comprehensive simulation models can be expensive and time consuming. So this paper discusses how to integrate distributed simulation sub-models as objects for constructing the required simulation model which is more large and complex. We introduce two web-oriented methodologies (such as JIDL, CORBA) and the concepts of agent for assisting modelers to integrate simulation models scattered over the web. SINDBAD, which we designed, is a simulation environment which makes it possible constructing a simulation model with distributed model objects on the web and performing the parallel simulation in a distributed way. It is organized according to design patterns in the object oriented concept. Actually we are on the premise that all the distributed objects are originally composed in a CORBA-compatible way to start with our prototype of SINDBAD.

  • PDF

사각형 둔각물체 주위의 유동장 특성에 관한 수치적 연구 (Numerical Study on the Isothermal Flow Field abound Rectangular Cross Section Bluff Body)

  • 이정란;이의주
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.35-41
    • /
    • 2012
  • The Numerical simulation was performed on the flow field around the two-dimensional rectangular bluff body in order to complement the previous experimental results of the bluff body stabilized flames [1]. For both fuel ejection configurations against an oxidizer stream, the flame stability was affected mainly by vortex structure and mixing field near bluff body. FDS(Fire Dynamic Simulator) based on the LES(Large Eddy Simulation) was employed to clarify the isothermal mixing characteristic and wake flow pattern around bluff body. The air used atmosphere and the fuel used methane. The result of counter flow configuration shows that the flow field depends on air velocity but the mixing field is influenced on the fuel velocity. At low fuel velocity the fuel mole fraction is below the flammable limit and hence the mixing is insufficient to react. Therefore, as the result, the flame formed at low fuel velocity is characterized by non-premixed flames. For the flow field of co-flow configuration, flame stability was affected by fuel velocity as well as air velocity. the vortex generated by fuel stream has counter rotating direction against the air stream. Therefore, the momentum ratio between air and fuel stream was important to decide the flame blow out limit, which is result in the characteristic of the partially premixed reacting wake near extinction.

Numerical Study of the Dynamics Connecting a Solar Flare and a Coronal Mass Ejection

  • Inoue, Satoshi;Kang, Jihye;Choe, Gwangson
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.97.1-97.1
    • /
    • 2014
  • We clarify the dynamics connecting a solar flare and a coronal mass ejection (CME) based on the results of a magnetohydrodynamic (MHD) simulation starting from a nonlinear force-free field (NLFFF) in Inoue et al. 2014. In previous studies, many authors proposed numerous candidates for triggering processes of a solar flare and the associated CME. Among them, the tether-cutting reconnection or the torus instability has been supported by recent simulations and observations. On the other hand, our MHD simulation in accordance with more realistic situations show that highly twisted field lines are first produced through a tether-cutting reconnection between the twisted field lines in the NLFFF, and then the newly formed, strongly twisted field erupts away from the solar surface because of a loss of equilibrium. This dynamics corresponds to the onset of a solar flare. Furthermore we have found that the strongly twisted erupting field reconnect with the weakly twisted ambient field during the eruption, creating a large flux tube, and then it rises over a critical height of the torus instability to trigger a CME. From these results, we conclude that the coupled process of tether-cutting reconnection and torus instability is important in the flare-CME relationship.

  • PDF

An Amber Force Field for S-Nitrosoethanethiol That Is Transferable to S-Nitrosocysteine

  • Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2903-2908
    • /
    • 2010
  • Protein S-nitrosation is common in cells under nitrosative stress. In order to model proteins with S-nitrosocysteine (CysSNO) residues, we first developed an Amber force field for S-nitrosoethanethiol (EtSNO) and then transferred it to CysSNO. Partial atomic charges for EtSNO and CysSNO were obtained by a restrained electrostatic potential approach to be compatible with the Amber-99 force field. The force field parameters for bonds and angles in EtSNO were obtained from a generalized Amber force field (GAFF) by running the Antechamber module of the Amber software package. The GAFF parameters for the CC-SN and CS-NO dihedrals were not accurate and thus determined anew. The CC-SN and CS-NO torsional energy profiles of EtSNO were calculated quantum mechanically at the level of B3LYP/cc-pVTZ//HF/6-$31G^*$. Torsional force constants were obtained by fitting the theoretical torsional energies with those obtained from molecular mechanics energy minimization. These parameters for EtSNO reproduced, to a reasonable accuracy, the corresponding torsional energy profiles of the capped tripeptide ACE-CysSNO-NME as well as their structures obtained from quantum mechanical geometry optimization. A molecular dynamics simulation of myoglobin with a CysSNO residue produced a well-behaved trajectory demonstrating that the parameters may be used in modeling other S-nitrosated proteins.

방사기저함수(RBF) 기반 벡터 필드를 이용한 실시간 군집 시뮬레이션 (Real-time Flocking Simulation through RBF-based Vector Field)

  • 성만규
    • 한국정보통신학회논문지
    • /
    • 제17권12호
    • /
    • pp.2937-2943
    • /
    • 2013
  • 본 논문은 방사기저함수(Radial Basis Function)를 이용한 실시간 군집 시뮬레이션 프레임웍을 제안한다. 제안된 프레임웍에서는 군집이 존재하는 환경을 격자 구조로 모델링 한 후, 격자 구조 각 셀에 하나의 방향 벡터를 할당한 벡터필드를 선형 방사기저함수를 이용하여 실시간으로 합성한다. 방사기저함수를 통한 벡터필드 생성 시, 마우스를 통한 제어라인(Control line)을 이용하며, 이 벡터필드 위에서 군집들은 벡터 필드 흐름에 따라, 자신의 움직임을 결정한다. 방해물과의 충돌회피는 반발벡터필드로 모델링하여, 기존의 벡터필드에 오버레이 하여 이용하고, 다른 캐릭터와의 충돌회피는 lattice-bin 알고리즘에 빠른 충돌회피를 수행한다.

Influence of Frequency on Electromagnetic Field of Super High-Speed Permanent Magnet Generator

  • Qiu, Hongbo;Wei, Yanqi;Wang, Wei;Tang, Bingxia;Zhao, Xifang;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.980-988
    • /
    • 2019
  • When compared with traditional power frequency generators, the frequency of a super high-speed permanent magnet generator (SHSPMG) is a lot higher. In order to study the influence of frequency on the electromagnetic field of SHSPMGs, a 60000rpm, 117kW SHSPMG was taken as a research object. The two-dimensional finite element model of the generator was established, and the two-dimensional transient field of the generator was simulated. In addition, a test platform of the generator was set up and tested. The reliability of the simulation was verified by comparing the experiment data with that of the simulation. Then the generator electromagnetic field under different frequencies was studied, and the influence mechanism of frequency on the generator electromagnetic field was revealed. The generator loss, voltage regulation rate, torque and torque ripple were analyzed under the rated active power load and different frequencies. The influences of frequency on the eddy current density, loss, voltage regulation rate and torque ripple of the generator were obtained. These conclusions can provide some reference for the design and optimization of SHSPMGs.