A Bl 'PFARE U =83 1999.109 FHYsm

Y

=4HE o o] ol ot
ALE, o]g 3

FFstm Ahel T ot
7% AA AHE 12719 %]

Tel.: 0345-400-5269, Fax.: 0345-409-2423, E-mail": wbshim@pis.hanyang.ac kr

A Simulation Modeling Methodology

by Integrating Distributed Simulation Objects on the Web

Wonbo Shim, Young Hae Lee

Department of Industrial Engineering
Hanyang University

Abstract

Web-based simulation is one of the most interesting field of simulation research
today. Among many research area of web-based simulation, we concern about what
a effective way of building simulation model is since creating comprehensive
simulation models can be expensive and time consuming. So this paper discusses
how to integrate distributed simulation sub-models as objects for constructing the
required simulation model which is more large and complex. We introduce two
web-oriented methodologies (such as JIDL, CORBA) and the concepts of agent for
assisting modelers to integrate simulation models scattered over the web.
SINDBAD, which we designed, is a simulation environment which makes it possible
constructing a simulation model with distributed model objects on the web and
performing the parallel simulation in a distributed way. It is organized according to
design patterns in the object oriented concept. Actually we are on the premise that
all the distributed objects are originally composed in a CORBA -~compatible way to
start with our prototype of SINDBAD.

1 Introduction distributed model repositories (Fishwick 1997).
As Fishwick did, we do focus more on the

World Wide Web definitely area of distributed model repositories since

represents a fertile area in which to perform there has been less research in the area than
simulation research. There are in the more mature field of PDES on the web.

directions that one can take in The concept of model repository lends itself to
establishing a connection between the web and the study of how to organized model
the simulation field. Two directions involve 1) information. Since the web is also concerned
paralle! and distributed model execution, and 2) with how to effectively organize information,

- 325 -

A BeolAets] ‘995 A et =& 1999109 FFdietw

this appears to be reasonable and natural way
to blend the web swith simulation.

By Fishwick, the concept of Digital Object has
been introduced. One of the most critical
problem in the field of computer simulation
today is the lack of published models and
physical objects within a medium - such as
the WWW - allowing such distribution. He
insisted that there is needed to be a
infrastructure or agreed-upon standards for
true digital object engineering. For this, there
are some implication to toward standards for
the digital objects.: 1) the Unified Modeling
Language (UML), 2) the High Level
Architecture, and 3) the VLSI Hardware
Definition Language (VHDL).

In this paper, we concern how one can treat
with probably heterogeneous and not
standardized objects which are distributed on
the web and how one can integrate them for
simulating integrated models together.

2 Foundations of Dealing with Distributed
Objects on the Web

2.1 CORBA

CORBA (Common Object Request Broker
Architecture) is the standard distributed object
architecture developed by the Object
Management Group (OMG) consortium. Since
1989 the mission of the OMG has been the
specification of an architecture for an open
software bus, or Object Request Broker (ORB),
on which object components written by
different vendors can inter-operate across
networks and operating systems. This standard
allows CORBA objects to invoke one another
without knowing where the objects they access
reside or in what language the requested
objects are implemented. The OMG-specified
Interface Definition Language (IDL) is used to
define the interfaces to CORBA objects.

CORBA objects differ from typical
programming language objects in these ways:
1) CORBA objects can be located anywhere on
a network, 2) CORBA objects can inter—operate
with objects on other platforms, and 3)
CORBA objects can be written in any
programming language for which there is a
mapping from OMG IDL to that language
(Mappings currently specified include Java,

C++, C, Smalltalk, COBOL, and Ada). ,
The figure 1 below shows a method request
sent from a client to a CORBA object
implementation in a server.

Object
Reference Servant
Chent — Server

xe) —0

Stubs

Skeletons

N S

' ORB

* 1IOP / Internet OR8

L methodrequest = « « = o = o = = o

Figure 1. Implementation between client and
server

The client has no knowledge of the CORBA
object’s location, implementation details, nor
which ORB is used to access the object.
Different ORBs communicate via the
OMG-specified Internet InterORB Protocol
(IIOP).

2.2 Java IDL (JIDL)

Today Java is the most powerful and popular
language for implementing web-based
simulation. Moreover Java IDL gives a great
chance to incorporate with CORBA.

Java IDL is an ORB provided with the JDK
12. It is a technology for distributed objects -
that is, objects interacting on different
platforms across a network. JIDL is similar to
Remote Method Invocation(RMI). However,
JIDL enables objects to interact regardless of
whether they’re written in Java programming
language or another language such as C++.
This is possible because Java IDL is based on
the CORBA. JIDL supports the mapping for
Java as each language that supports CORBA
has its own IDL mapping. Together with the
idltojava compiler, it can be used to define,
implement, and access CORBA objects from
the Java programming language. Java IDL is
compliant with the CORBA/IIOP 2.0
Specification and the IDL-to-Java Language
Mapping.

No interface repository is provided as part of
Java IDL. An interface repository 1s not
required because under normal circumstances,
clients have access to generated stub files.

- 326 -

A Eaoldet s ‘993 8

The brief steps through the process of
designing and developing a distributed object
application with JIDL is the following: 1)
Define the remote interface, 2) Compile the
remote interface, 3) Implement the server, and
then 4) Implement the client.

An IDL interface declares a set of client
accessible operations, exceptions, and tyvped
attributes (values). Each operation has a
signature that defines its name, parameters,
result, and exceptions. For example, a simple
IDL interface that describe the common
machine’s operation, follows.

Module Station {
Interface Queue {
int capacity();
k

Interface Activity {
int delay(%
b
|5

2.3 Design patterns

Our basic apprecach for constructing a
environment integrating objects .is based on the
principles of object-oriented design concept,
especially Design Patterns. A definition which
more closely reflects its wuse within the
patterns community is: A pattern is a named
nugget of instructive information that captures
the essential structure and insight of a
“successful family of proven solutions to a
recurring problem that arises within a certain
context and system of forces. Due to using
design patterns as a shared language for
communicating insight and experience about
their problems and solutions, one can take
great advantages that design patterns allow
programmers to collaborate and combine their
wisdom more effectively and also enable to
extend the reusability of the previous made
objects and their design.

For example, Source node, which is derived
from Node class, can be established in the
following pattern so called Strategy. For
representation of the design patterns, we use
the Unified Modeling Language (UML).

3] =F3 1999.109 FgFoistw

it

abstactArrival

gelinterArvTime(! J

A

Strategy Pattern t' l

l ArvExpon ' [ArvNorm '

Figure 2: An example of Strategy pattern

3 Architecture of Integrating Distributed
Simulation Models as Objects

3.1 Multi-tiered application

Traditional applications are, for the most part,
self-contained monolithic programs which have
limited access to one another’s procedures and
data. They are usually cumbersome to build
and expensive to maintain because even simple
changes require the entire program to be
recompiled and re-tested.

By contrast, SINDBAD, which we named,
using distributed objects is made up of
three-tiered architecture, is CORBA
-compatible application environment, and
forests a neat separation of concerns based on
the Model/View/Controller (MVC) paradigm. It
has a user interface code layer, a computation
(simulation code or logic) layer, and a database
access layer. All interactions between the
layers occurs via the interfaces that all
CORBA objects must publish. The figure 3
below illustrates the three-tiered, modular
applications.

1st Tier| GUI GUI 1
| 1
Service Service
2nd logic logic
Tier
\ Service _—
logic

3rd Tier @@

Figure 3: the 3-tiered application
3.2 Integrating distributed simulation

- 327 -

d@A ool Aets] ‘99EAE Y =8 1999109 AT

objects

simulation models as object

The simulation objects may have a broad
meanings such as simple classes or their
objects, Java Beans, components, even
simulation sub-models. For instance, if vou
were creating a model of a manufacturing
plant you might want to represent the
machines, routings, work in process, the tools
and fixtures, the customer orders and the
workers. Each of these can be expressed by
unit of object. So each object has its own
state and functionality. The functionality would
be that set of activities the object would
perform if requested, and the state of the
object would be the value of all variables
describing that particular object.

building a simulation model

Creating comprehensive simulation models can
be expensive and time consuming. It is worth
while to develop a general methodology or
environment that will allow simulation users to
quickly and efficiently create high fidelity
simulation models by linking independent model
objects distributed across the Internet.
Basically we try to apply design patterns to
constitute simulation libraries. As the previous
mentioned, design patterns give us great
understanding and reusability of model objects.
So it will allows us to way of integration
many dispersed models. And secondly we
borrow us the concept of plug and play. As if
we played with Lego blocks, we may bring to
assembly the models by providing middle-ware
as capsule of the objects. For this, we are on
the premise that all the distributed objects are
originally composed in a CORBA-compatible
way to start with.

With all of the above, the integration of
distnbuted simulation models is based on four
fundamental themes: 1) models are objects, 2)
they communicate with one another In
client/server relationships by message-passing,
3) each model is represented by an agent that
explains the capabilities of the model and
assists with integration of that model, and 4)
each distributed model can be implemented in
parallel simulation.

agents

The purpose of model agents is to facilitate
the construction of network models. The roles
of model agents are to be reactive with client
as a simulation model authors, to find the
appropriate model objects on the web, and to
provide a interface to object for communication
with other objects. For these aspects, model
agents know what their model object can
accomplish, what data they need to perform
those actions, and what information the model
will provide as it executes.

The agent is created and maintained separately
from the model. So sometimes the simulation
server may prepare several agents which play
the different roles each other to meet various
requirements of simulation modelers.

Figure 4 shows how the author to construct
the simulation model by react with agents and
simulation server.

Simulation Server @ Site A
_é'- "Search, monitor, and control”
Multi-Agents

AL Ay Model Agent

;

download a proper agent
Site 8 —

Figure 4. Interaction between simulation
modeler and model agent

3.3 Algorithm of integrating objects for
the agent

Agents are software programs that execute
specific tasks on behalf of another party. An
agent will help model builders select the
appropriate model from among various models,
and it will assist in configuration and operation
of the distributed model networks. An
important aspect of model integration is the
selection of appropriate models to be linked.

We propose to apply a data mining technique
for the intellectual agent, especially the
algorithm of market basket analysis based on
the association rule, case-based reasoning, and
decision tree. However actually we do not

- 328 -

A Eelol B3] 'O AGeds] =83 1999109 dSdisw

deeply concern about the intelligence of model
agent because it slightly step aside from the
main focus of this paper. Instead, one can be
rely on the possibilities that the search engines
such as Yahoo, Excite, AltaVista, etc. will
have a capability of finding simulation models
as objects. So one browses the simulation
models with the web browser such as netscape
or internet explorer on the World Wide Web.

4 SINDBAD: An Environment for Model
Integration and Parallel Distributed
Simulation

The procedure of implementing the proposed
web-based simulation modeling and performing
parallel simulation is summanzed in the
followings steps.

Step 1. A client who tries to make a
simulation model connects the simulation
server on the remote site.

Step 2. The client can request a modeling task
to a model agent. So one can construct a
desired simulation model by interacting with
the agent.

Step 3. The agent assists the client to find
appropriate simulation sub-models or objects
and monitors them.

Step 4. Once building a required simulation
model is complete, the client makes a request
for performing the simulation.

Step 5. Using the parallel distributed simulation
on the web or Using the PDES system on a
site is the other matter of decision making.
Alternatively the client simply download the
required engines from the simulation server to
run the simulation task by oneself.

Figure 5 shows how to implement integrating
for constructing simulation model and to
perform simulation in the environment of
SINDBAD.

clgent

1a
"

4.sendresuit

1 request

site B

3 downioad simulation engine
or required model

2. search and integrate

Figure 5. How to implement integrating for
constructing simulation model and to perform
simulation.

The Internet itself, holds a massive parallel
processing power in building simulation models
and performing simulation itself. We are still
under the experiments that test the capabilities
of parallel distributed simulation using
SINDBAD.

5 Summary

Modeling reduced time, cost, and risk while
producing information needed for design,
analysis and operation of complex production
systems. However, the costs of modeling, the
expertise required, and the pains of starting
anew each time are impediments to more wide
spread adoption of simulation technology.

In this paper, we presented a architecture for

dealing with distributed simulation models as

objects. This paper shows how to construct
the simulation model by integrating the
distributed objects on the web.

Our development effort has been divided into

the following major tasks:

1) Developing a standard methodology to
transform individual distributed simulation
models into objects worth full network
communication abilities,

2) . Creating agents whose role are
searching, assisting (monitoring) to
integrate distributed simulation sub-models
as object, and controlling implementation of
simulation on the web,

3) And developing an environment that
brings together the tools and mechanisms
to construct model networks, to monitor
and control their interaction in performing a

- 329 -

A Eaol A dts] '99% A gt

simulation.

Java IDL gives a great convenience to one
whn wants to take advantages of CORBA. We
could achieve the extended reusability of
simulation objects and common understanding
about the constructed simulation models by
using design patterns.

Acknowledgement

The work presented here was supported by
Institute of Information Technology
Assessment in Korea.

References

Fishwick, P. A, 1998, "Issues with
Web-Publishable Digital Objects”, SPIE
Aerosense Conference, April 1998, Orlando,
Florida, http://www.cise.ufl.edu/ fishwick/tr
/chron.html

Heim, J. A., 1997, ’Integrating distributed
simulation objects”, in Proceedings of the 1997
Winter Simulation Conference, December 7-10,
1997, Atlanta, Georgia, pp. 532-538

Java'™™ IDL, in Java TM 2 SDK, Standard
Edition Documentation, Ver. 1.2.2,
http://java.sun.com/products/jdk/1.2/docs/
guide/idl/index.html

Grand, M., Patterns in Java, vol. 1 (1998) and
vol. 2 (1999), Wiley

Joines, J. A, and Roberts, S. D, 1998
"Object-Oriented Simulation” in Handbook of
Simulation, Edited by Jerry Banks, John Wiley
& Sons, Inc. 397-427.

Buss, A, L. Jackson.1998. "Distributed
simulation modeling: A comparison of HLA,
CORBA, and RMI", In Proceedings of the 1998
Winter Simulation Conference, 819-825.

Chan, A. and Spracklen, T. 1999, "Web-based
distributed object simulation framework”, in
The proceedings of the 1999 summer computer
simulation conference, July 11-15, 1999,
Chicago, illinois, pp. 9-14

£d3] =%3 1999.109 FFNFn

Gilbert, S. and McCarty, B., 1998, "Designing
remote objects”, “Designing persistent objects:
Database design and Implementation”, and
"Architectures: Design~-in-the-huge”, in
Object-Oriented Design in Java, The Waite
Group, Inc., pp. 439-465, pp. 467-493, pp.
613-639

Page, E., Buss A., Fishwick, P. A., Healy, K.,
Nance, R. and Paul, R., 1999, "Web-Based
Simulation: Revolution or Evolution”, ACM
Transactions on Modeling and Computer
Simulation, February 1999,

http://www .cise.ufl.edu/~fishwick/tr/chron.html

Fishwick, P. A., 1998, "An architectural design
for digital objects”, in Proceedings of the 1998
Winter Simulation Conference, December 13-16,
1998, Washington, D.C., pp. 359-365.

Joines, J. A. and Roberts, S. D. 1998,
"Fundamentals of object-oriented simulation”,
in Proceedings of the 1998 Winter Simulation
Conference, December 13-16, 1998, Washington,
D. C., pp. 141-148.

Fishwick, P. A. 1997, "Web-based simulation”,
in Proceedings of the 1997 Winter Simulation
Conference, December 7-10, 1997, Atlanta,
Georgia, pp. 100-102.

- 330 ~

