• Title/Summary/Keyword: Field scale model

Search Result 975, Processing Time 0.026 seconds

A Study on the Generation of Initial Turbulent Velocity Field with Non-zero Velocity Derivative Skewness (속도미분비대칭도를 고려한 초기난류 속도장 생성방법 연구)

  • Koh Bum-Yong;Park Seung-O
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.819-822
    • /
    • 2002
  • It is necessary for the numerical simulation of 3-dimensional incompressible isotropic decaying turbulence to construct 3-dimensional initial velocity field which resembles the fully developed turbulence. Although the previous velocity field generation method proposed by Rogallo(1981) satisfies continuity equation and 3-dimensional energy spectrum, it has limitation, as indicated in his paper, that it does not produce the higher velocity moments(e. g. velocity derivative skewness) characteristic of real turbulence. In this study, a new velocity field generation method which is able to control velocity derivative skewness of initial velocity field is proposed. Brief descriptions of the new method and a few parameters which is used to control velocity derivative skewness are given. A large eddy simulation(LES) of isotropic decaying turbulence using dynamic subgrid-scale model is carried out to evaluate the performance of the initial velocity field generated by the new method. It was shown that the resolved turbulent kinetic energy decay curve and the resolved enstrophy decay curve from the initial field of new method were more realistic than those from the initial field of Rogallo's method. It was found that the dynamic model coefficient from the former was initially half the stationary value and experienced relatively short transition period, though that from the latter was initially zero and experienced relatively longer transition period.

  • PDF

Development of Wave Overtopping-Overflow Transition Model Based on Full-scale Experiments

  • Mase, Hajime;Kim, Sooyoul;Hasegawa, Makoto;Jeong, Jae-Hoon;Yoon, Jong-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.128-135
    • /
    • 2020
  • When high waves and storm surge strike simultaneously, the characteristics of the fluid field change drastically from overtopping according to the wave runup height to overflow through a transition state that combines overtopping and overflows. However, an estimation model or evaluation method has not yet been established because there is not enough engineering data. This study developed a wave overtopping-overflow transition model based on a full-scale experiment involving wave overtopping and overflow transition, which appropriately reproduced the effect of waves or the temporal change in inundation flow. Using this model to perform a calculation for the wave overtopping and overflow transition process under typical circumstances, this study determined the wave runup height and features of the inundation flow under time series changes as an example.

Eringen's nonlocal model sandwich with Kelvin's theory for vibration of DWCNT

  • Hussain, Muzamal;Naeem, Muhammad N.;Asghar, Sehar;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.343-354
    • /
    • 2020
  • In this paper, vibration characteristics of chiral double-walled carbon nanotubes entrenched on Kelvin's model. The Eringen's nonlocal elastic equations are being combined with Kelvin's theory to observe small scale response. A nonlocal model has been formulated to explore the frequency spectrum of chiral double-walled CNTs along with diversity of indices and nonlocal parameter. Wave propagation is proposed technique to establish field equations of model subjected to four distinct end supports. The significance of scale effect in relevance of length-to-diameter and thickness- to- radius ratios are discussed and displayed in detail.

Study on Parental Intelligence Scale Development in Parent at Childhood (유아기 부모를 위한 부모역할지능척도(PIS)의 개발)

  • Hyon, Mi Sook
    • Korean Journal of Child Studies
    • /
    • v.25 no.6
    • /
    • pp.15-34
    • /
    • 2004
  • This study is an attempt to develop the 'Parental Intelligence Scale', which can be applied in the parent education and counselling and provide more useful information for more appropriate interventions by evaluating the characteristics of parent's roles and strong/weak points of the parent's roles under the special situation and environments. In developing the scales, this study reviews of numbers of existing literatures, analysis of scales and tools on parent's role or attitude, collection of episodes on parent's role, validity check processes by field experts, and 2 rounds of factor analysis. The outcomes of the study are as follows; In regard of the development of Parental Intelligence Scale, 3 factors of care-giving role, management role, nurturing role were derived from the conceptual and measurement model. From these 3 factors, 8 sub-factors of empathy, encourage, enhancement, rational authoritativeness, flexibility, rejection, acceptance, control were constructed. 39 question items were derived in order to measure these sub-factors. Especially through the two rounds of factor analysis, the question items with enhanced internal consistency were derived and total cumulative variance was increased, which made theoretical model into the generalized model possible.

  • PDF

Viscoplasticity model stochastic parameter identification: Multi-scale approach and Bayesian inference

  • Nguyen, Cong-Uy;Hoang, Truong-Vinh;Hadzalic, Emina;Dobrilla, Simona;Matthies, Hermann G.;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.411-438
    • /
    • 2022
  • In this paper, we present the parameter identification for inelastic and multi-scale problems. First, the theoretical background of several fundamental methods used in the upscaling process is reviewed. Several key definitions including random field, Bayesian theorem, Polynomial chaos expansion (PCE), and Gauss-Markov-Kalman filter are briefly summarized. An illustrative example is given to assimilate fracture energy in a simple inelastic problem with linear hardening and softening phases. Second, the parameter identification using the Gauss-Markov-Kalman filter is employed for a multi-scale problem to identify bulk and shear moduli and other material properties in a macro-scale with the data from a micro-scale as quantities of interest (QoI). The problem can also be viewed as upscaling homogenization.

Scaling theory to minimize the roll-off of threshold voltage for nano scale MOSFET (나노 구조 MOSFET의 문턱전압 변화를 최소화하기 위한 스케일링 이론)

  • 김영동;김재홍;정학기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.494-497
    • /
    • 2002
  • In this paper, we have presented the simulation results about threshold voltage of nano scale lightly doped drain (LDD) MOSFET with halo doping profile. Device size is scaled down from 100nm to 40nm using generalized scaling. We have investigated the threshold voltage for constant field scaling and constant voltage scaling using the Van Dort Quantum Correction Model(QM) and direct tunneling current for each gate oxide thickness. We know that threshold voltage is decreasing in the constant field scaling and increasing in the constant voltage scaling when gate length is reducing, and direct tunneling current is increasing when gate oxide thickness is reducing. To minimize the roll-off characteristics for threshold voltage of MOSFET with decreasing channel length, we know u value must be nearly 1 in the generalized scaling.

  • PDF

Finite element modelling of transmission line structures under tornado wind loading

  • Hamada, A.;El Damatty, A.A.;Hangan, H.;Shehata, A.Y.
    • Wind and Structures
    • /
    • v.13 no.5
    • /
    • pp.451-469
    • /
    • 2010
  • The majority of weather-related failures of transmission line structures that have occurred in the past have been attributed to high intensity localized wind events, in the form of tornadoes and downbursts. A numerical scheme is developed in the current study to assess the performance of transmission lines under tornado wind load events. The tornado wind field is based on a model scale Computational Fluid Dynamic (CFD) analysis that was conducted and validated in a previous study. Using field measurements and code specifications, the CFD model data is used to estimate the wind fields for F4 and F2 full scale tornadoes. The wind forces associated with these tornado fields are evaluated and later incorporated into a nonlinear finite element three-dimensional model for the transmission line system, which includes a simulation for the towers and the conductors. A comparison is carried between the forces in the members resulting from the tornadoes, and those obtained using the conventional design wind loads. The study reveals the importance of considering tornadoes when designing transmission line structures.

Large Eddy Simulation of Flow around a Bluff Body of Vehicle Shape

  • Jang, Dong-Sik;Lee, Yeon-Won;Doh, Deug-Hee;Toshio Kobayashi;Kang, Chang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1835-1844
    • /
    • 2001
  • The turbulent flow with wake, reattachment and recirculation is a very important problem that is related to vehicle dynamics and aerodynamics. The Smagorinsky Model (SM), the Dynamics Subgrid Scale Model (DSM), and the Lagrangian Dynamic Subgrid Scale Model (LDSM) are used to predict the three-dimensional flow field around a bluff body model. The Reynolds number used is 45,000 based on the bulk velocity and the height of the bluff body. The fully developed turbulent flow, which is generated by the driver part, is used for the inlet boundary condition. The Convective boundary condition is imposed on the outlet boundary condition, and the Spalding wall function is used for the wall boundary condition. We compare the results of each model with the results of the PIV measurement. First of all, the LES predicts flow behavior better than the k-$\xi$ turbulence model. When ew compare various LES models, the DSM and the LDSM agree with the PIV experimental data better than the SM in the complex flow, with the separation and the reattachment at the upper front part of th bluff body. But in the rear part of the bluff body, the SM agrees with the PIV experimental results better than them. In this case, the SM predicts overall flow behavior better than the DSM nd the LDSM.

  • PDF

Connection between a Small-Scale Emerging Island and Double Arc Loops Producing a M6.5 Flare in Active Region 12371

  • Kang, Jihye;Inoue, Satoshi;Moon, Yong-Jae;Magara, Tetsuya;Kusano, Kanya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.81.3-81.3
    • /
    • 2017
  • In this paper, we report a small-scale emerging island and double arc loops, which are associated with a M6.5 flare, in Active Region 12371. We investigate the spatial and temporal changes of both photospheric magnetic fields using SDO/HMI data and coronal magnetic structures obtained from nonliner force-free field (NLFFF) extrapolation. From the vector magnetograms, we find a small-scale emerging island near the main polarityy inversion line about three hours before the flare. The island has a strong shear angle, which is determined by difference between transverse component of observed field and potential field, of around 90 degrees. Furthermore, the NLFFF well reproduces a sigmoidal structure seen in SDO/AIA 94, which is consistent with the double arc loops configuration suggested by Ishiguro and Kusano (2017) who introduced a magnetic configuration showing the double arc instability. The observed emerging island is located among the double arc loops, which is also supproted by their model. Finally, there was an eruption (M6.5 flare) associated with the loops. We discuss a possible role of the double arc instability for the eruption.

  • PDF

Electrical resistivity survey and interpretation considering excavation effects for the detection of loose ground in urban area

  • Seo Young Song;Bitnarae Kim;Ahyun Cho;Juyeon Jeong;Dongkweon Lee;Myung Jin Nam
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.109-119
    • /
    • 2023
  • Ground subsidence in urban areas due to excessive development and degraded underground facilities is a serious problem. Geophysical surveys have been conducted to estimate the distribution and scale of cavities and subsidence. In this study, electrical resistivity tomography (ERT) was performed near an area of road subsidence in an urban area. The subsidence arose due to groundwater leakage that carried soil into a neighboring excavation site. The ERT survey line was located between the main subsidence area and an excavation site. Because ERT data are affected by rapid topographic changes and surrounding structures, the influence of the excavation site on the data was analyzed through field-scale numerical modeling. The effect of an excavation should be considered when interpreting ERT data because it can lead to wrong anomalous results. A method for performing 2D inversion after correcting resistivity data for the effect of the excavation site was proposed. This method was initially tested using a field-scale numerical model that included the excavation site and subsurface anomaly, which was a loosened zone, and was then applied to field data. In addition, ERT data were interpreted using an existing in-house 3D algorithm, which considered the effect of excavation sites. The inversion results demonstrated that conductive anomalies in the loosened zone were greater compared to the inversion that did not consider the effects of excavation.