• Title/Summary/Keyword: Field emission property

Search Result 171, Processing Time 0.03 seconds

Characterization and Preparation of PEG-Polyimide Copolymer Asymmetric Flat Sheet Membranes for Carbon Dioxide Separation (이산화탄소 분리를 위한 폴리에틸렌글리콜계 폴리이미드 공중합체 비대칭 평판형 분리막의 제조 및 기체 투과 특성평가)

  • Park, Jeong Ho;Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.547-557
    • /
    • 2015
  • In this study, we synthesized polyimide with high carbon dioxide gas transport property using 2,2-bis(3,4-carboxylphenyl) hexafluoropropane, 2,3,5,6-tetramethyl-1,4-phenylenediamine and poly(ethylene glycol) bis(3-aminopropyl) terminated and then we calculated solubility parameter of synthesized polymer and non-solvent phase separation coefficient to determine proper solvent for preparation of asymmetric membrane, also we measured the viscosity of the polymer solution to check polymer contents in membrane solution and prepare asymmetric membrane with $LiNO_3$ additives. The morphology and gas separation property of membrane prepared by phase separation method was confirmed using Field Emission Scanning Electron Microsope and the single gas permeation measurement apparatus. We confirmed that the carbon dioxide permeance of the membrane increased and the selectivity showed little change with decreasing of the volatile solvent contents.

Mechanical Properties of TiN and DLC coated Rod for Pedicle Screw System (TiN 및 DLC 코팅된 척추용 나사못 시스템 Rod의 기계적 특성 분석)

  • Kang, Kwan-Su;Jung, Tae-Gon;Yang, Jae-Woong;Woo, Su-Heon;Park, Tea-Hyun;Jeong, Yong-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.3
    • /
    • pp.183-191
    • /
    • 2017
  • In this study, surface morphology and mechanical property of TiN and DLC coated pedicle screw have been investigated by field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, vickers hardness test, axial gripping, and axial torsional gripping capacity test. From the EDS and XRD results, the composition and crystal structure of TiN and DLC coated surface were verified. The hardness value was increased by TIN and DLC coating, and the DLC coating surface has the highest value. The gripping capacity also showed higher value for TiN and DLC coated specimen than that of non-coated (Ti alloy) surface. The surface morphology of gripping tested specimen showed rougher scratched surface from Ti alloy than TiN and DLC coated layer.

Gas sensing property of polypyrrole and SnO2 composite (폴리피롤과 산화주석 복합재료를 이용한 센서의 가스 검지 특성)

  • Kim, Do-Yeon;Yu, Joon-Boo;Son, Sung-Ok;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.211-215
    • /
    • 2006
  • Conducting polymer (Polypyrrole) and Tin oxide ($SnO_{2}$) composite films have been fabricated with layer-by-layer technique. $SnO_{2}$ layer was screen-printed on $Al_{2}O_{3}$ substrate and then was dip-coated with polypyrrole (Ppy). The microstructures of composite films were evaluated by a field emission scanning electron microscope (FE-SEM) and FTIR spectral analysis. The change in sensitivity to various VOCs was observed. The target VOCs were methanol, ethanol, benzene and toluene. The sensitivities of the $Ppy/SnO_{2}$ sensor to benzene and toluene were very low at 1000 ppm (2.1 %, 1.5 %), while the sensitivities to methanol and ethanol was high (9 %, 11 %). It indicates that the sensors have selectivity to alcoholic gases such as methanol and ethanol.

Property and Microstructure Evolution of Nickel Silicides for Poly-silicon Gates (게이트를 상정한 니켈 실리사이드 박막의 물성과 미세구조 변화)

  • Jung Youngsoon;Song Ohsung;Kim Sangyoeb;Choi Yongyun;Kim Chongjun
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.301-305
    • /
    • 2005
  • We fabricated nickel silicide layers on whole non-patterned wafers from $p-Si(100)SiO_2(200nm)$/poly-Si(70 nm)mn(40 nm) structure by 40 sec rapid thermal annealing of $500\~900^{\circ}C$. The sheet resistance, cross-sectional microstructure, surface roughness, and phase analysis were investigated by a four point probe, a field emission scanning electron microscope, a scanning probe microscope, and an X-ray diffractometer, respectively. Sheet resistance was as small as $7\Omega/sq$. even at the elevated temperature of $900^{\circ}C$. The silicide thickness and surface roughness increased as silicidation temperature increased. We confirmed the nickel silicides iron thin nickel/poly-silicon structures would be a mixture of NiSi and $NiSi_2$ even at the $NiSi_2$ stable temperature region.

Effects of Boron Concentration in ZnO:Al Seed Films on the Growth and Properties of ZnO Nanorods (ZnO:Al 시드 막의 보론 농도가 ZnO 나노로드의 성장 및 특성에 미치는 영향)

  • Ma, Tae-Young;Park, Ki-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1488-1493
    • /
    • 2017
  • Boron-doped ZnO:Al films were deposited by rf magnetron sputtering. The structural and optical property variations of the films with the boron amounts were studied. ZnO nanorods were grown on $SiO_2/Si$ wafers and glass by a hydrothermal method. ~50 nm-thick boron-doped ZnO:Al films were deposited on the substrates as seed layers. The mixed solution of zinc nitrate hexahydrate and hexamethylenetetramine in DI water was used as a precursor for ZnO nanorods. The concentration of zinc nitrate hexahydrate and that of hexamethylenetetramine were 0.05 mol, respectively. ZnO nanorods were grown at $90^{\circ}C$ for 2 hours. X-ray diffraction was conducted to observe the crystallinity of ZnO nanorods. A field emission scanning electron microscope was employed to study the morphology of nanorods. Optical transmittance was measured by a UV-Vis spectrophotometer, and photoluminescence was carried out with 266 nm light. The ZnO nanorods grown on the 0.5 wt% boron-doped ZnO seed layer showed the best crystallinity.

Optical properties of metal doped TiO2 thin films prepared by spin coating-pyrolysis process (스핀코팅으로 금속물질을 도핑한 TiO2박막의 광학적 특성)

  • Hwang, Kyu-Seong;Kim, Jai-Min;Jung, Ju-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • Metal-doped $TiO_2$ thin films were prepared on soda-lime-silica glass substrates by using a spin coating-pyrolysis process. As-deposited films were prefired at $500^{\circ}C$ or 10 min in air. Five-coated films were finally annealed at $600^{\circ}C$ for 30 min in air. High resolution X-ray diffraction, field emission scanning electron microscope and UV spectrophotometer were used to analyze film's property. The largest red shift in optical energy gap is obtained in the Fe-doped $TiO_2$ film.

  • PDF

Production and Properties of Ag Metallic Nanoparticle Fluid by Electrical Explosion of Wire in Liquid (유체 내 전기선폭발법에 의한 은 나노입자 유체의 제조 및 특성)

  • Park, E.J.;Bac, L.H.;Kim, J.S.;Kwon, Y.S.;Kim, J.C.;Choi, H.S.;Chung, Y.H.
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.217-222
    • /
    • 2009
  • This paper presents a novel single-step method to prepare the Ag nanometallic particle dispersed fluid (nanofluid) by electrical explosion of wire in liquid, deionized water (DI water). X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) were used to investigate the characteristics of the Ag nanofluids. Zeta potential was also used to measure the dispersion properties of the as-prepared Ag nanofluid. Pure Ag phase was detected in the nanofluids using water. FE-SEM analysis shows that the size of the particles formed in DI water was about 88 nm and Zeta potential value was about -43.68 without any physical and chemical treatments. Thermal conductivity of the as-prepared Ag particle dispersed nanofluid shows much higher value than that of pure DI water.

Synthesis and Luminescent Characteristics of $BaGa_2S_4:Eu^{2+}$ Phosphor by Solid-state Method

  • Kim, Jae-Myung;Park, Joung-Kyu;Kim, Kyung-Nam;Lee, Seung-Jae;Kim, Chang-Hae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1096-1099
    • /
    • 2006
  • $II-III_2-(S,Se)_4$ structured of phosphor have been used at various field because those have high luminescent efficiency and broad emission band. Among these phosphors, europium doped $BaGa_2S_4$ was prepared by solid-state method and we try to look into an application possibility due to an emissive property of UV region. Also, general sulfide phosphors were synthesized by using injurious $H_2S\;CS_2$ gas. However, this study prepared $BaGa_2S_4:Eu^{2+}$ phosphor is addition to excess sulfur under 5% $H_2/95%\;N_2$ reduction atmosphere. So, this process could large scale synthesis because of non-harmfulness and simple process. The photo-luminescence efficiency of the prepared $BaGa_2S_4:Eu^{2+}$ phosphor increased 20% than commercial $SrGa_2S_4:Eu^{2+}$ phosphor. The prepared $BaGa_2S_4:Eu^{2+}$ could apply to green phosphor for white LED of three wavelengths.

  • PDF

An Improved Calculation Model for Analysis of [111] InGaAs/GaAs Strained Piezoelectric Superlattices

  • Kim, Byoung-Whi;Yoo, Jae-Hoon;Kim, Soo-Hyung
    • ETRI Journal
    • /
    • v.21 no.4
    • /
    • pp.65-82
    • /
    • 1999
  • We present a calculation model for an improved quantitative theoretical analysis of electronic and optical properties of strained-piezoelectric[111] InGaAs/GaAs superlattices (SLs). The model includes a full band-coupling between the four important energy bands: conduction, heavy, light, and spin split-off valence bands. The interactions between these and higher lying bands are treated by the k ${\cdot}$ p perturbation method. The model takes into account the differences in the band and strain parameters of constituent materials of the heterostructures by transforming it into an SL potential in the larger band-gap material region. It self-consistently solves an $8{\times}8$ effective-mass $Schr{\ddot{o}}dinger$ equation and the Hartree and exchange-correlation potential equations through the variational procedure proposed recently by the present first author and applied to calculate optical matrix elements and spontaneous emission rates. The model can be used to further elucidate the recent theoretical results and experimental observations of interesting properties of this type of quantum well and SL structures, including screening of piezoelectric field and its resultant optical nonlinearities for use in optoelectronic devices.

  • PDF

Property of the HPHT Diamonds Using Stack Cell and Zn Coating with Pressure (적층형 셀과 아연도금층을 이용한 고온고압 합성다이아몬드의 압력변화에 따른 물성 연구)

  • Shen, Yun;Song, Oh-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.167-172
    • /
    • 2012
  • Fine diamond powders are synthesized with a 420 ${\phi}$ cubic press and stack-cell composed of Kovar ($Fe_{54}Ni_{29}Co_{17}$) (or Kovar+7 ${\mu}m$-thick Zn electroplated) alloy and graphite disks. The high pressure high temperature (HPHT) process condition was executed at $1500^{\circ}C$ for 280 seconds by varying the nominal pressure of 5.7~10.6 GPa. The density of formation, size, shape, and phase of diamonds are determined by optical microscopy, field emission scanning electron microscopy, thermal gravimetric analysis-differential thermal ammnlysis (TGA-DTA), X-ray diffraction (XRD), and micro-Raman spectroscopy. Through the microscopy analyses, we found that 1.5 ${\mu}m$ super-fine tetrahedral diamonds were synthesized for Zn coated Kovar cell with whole range of pressure while ~3 ${\mu}m$ super-fine diamond for conventional Kovar cell with < 10.6 GPa. Based on $750^{\circ}C$ exothermic reaction of diamonds in TGA-DTA, and characteristic peaks of the diamonds in XRD and micro-Raman analysis, we could confirm that the diamonds were successfully formed with the whole pressure range in this research. Finally, we propose a new process for super-fine diamonds by lowering the pressure condition and employing Zn electroplated Kovar disks.