Journal of Korean Powder Metallurgy Institute Vol. 16, No. 3, 2009 DOI: 10.4150/KPMI.2009.16.3.217

유체 내 전기선폭발법에 의한 은 나노입자 유체의 제조 및 특성

박은주·L. H. Bac·김지순·권영순·김진천*·최혜선"·정용훈[®] 울산대학교 첨단소재공학부, "울산대학교 생명과학부, [®](주)솔고나노어드밴스

Production and Properties of Ag Metallic Nanoparticle Fluid by Electrical Explosion of Wire in Liquid

E. J. Park, L. H. Bac, J. S. Kim, Y. S. Kwon, J. C. Kim^{*}, H. S. Choi^a and Y. H. Chung^b

School of Materials Science & Engineering, University of Ulsan ^aSchool of Biological Sciences, University of Ulsan, Mugeo-dong, Ulsan, 680-749, Korea ^bSolcoNanoadvance Inc. Doodea-dong, Changwon, 641-771, Korea (Received April 9, 2009; Revised April 28, 2009; Accepted May 8, 2009)

Abstract This paper presents a novel single-step method to prepare the Ag nanometallic particle dispersed fluid (nanofluid) by electrical explosion of wire in liquid, deionized water (DI water). X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) were used to investigate the characteristics of the Ag nanofluids. Zeta potential was also used to measure the dispersion properties of the as-prepared Ag nanofluid. Pure Ag phase was detected in the nanofluids using water. FE-SEM analysis shows that the size of the particles formed in DI water was about 88 nm and Zeta potential value was about - 43.68 without any physical and chemical treatments. Thermal conductivity of the as-prepared Ag particle dispersed nanofluid shows much higher value than that of pure DI water.

Keywords : Nanofluid, Dispersion property, Electrical explosion of wire

1. 서 론

나노입자는 직경이 1~100 nm인 입자를 말하며, 큰 비표면적에 의해 기존의 마이크론 입자와 다른 특 이한 기계적, 전기적, 자기적 특성을 나타낸다. 최근 나노기술에 대한 관심과 아울러 나노입자가 분산된 콜로이드, 즉 나노유체(nanofluid)에 대한 연구가 매 우 활발히 진행되고 있다. 이러한 나노분말 분산 나 노유체는 열전달 매체, 바이오/의약, 향장학, 첨단 정 보통신 기술에 이르기까지 없어선 안 될 핵심기술로 각광을 받고 있다[1-3].

나노유체의 제조는 크게 두 가지 방법이 사용되고 있다. 첫 번째 방법은 일반적으로 2단계 공정(Two Step Method)라 불리며 나노입자의 제작 단계와 유 체 속에 분산, 부유시키는 단계를 분리해서 나노유체 를 제작하는 방법이다[4, 5]. 통상적 나노입자 제조기 술을 이용하여 유체 속에 분산시키고자 하는 나노입 자를 제작 한 후, 그 입자를 후속적으로 유체 속에 혼합하여 분산, 부유시키는 기술이다. 이 기술은 나 노유체를 대량생산 할 수 있다는 장점이 있으나, 입 자의 표면성질과 유체의 특성이 서로 상이할 경우 분 산성이 매우 떨어진다는 단점이 있으며, 제조된 나노 입자가 취급 중에 응집이 일어나 균일한 분산성을 가 지는 나노유체를 제조하기가 용이하지 않다.

두번째 방법은 1단계 공정(One Step Method)라 고 불리며 유체 속에서, 분산, 부유시키고자 하는 나 노입자를 직접 생성하는 기술이다. 현재까지 알려진 방법은 물질을 직접 고진공 챔버 속에서 기화시키고 기화된 물질이 고진공 챔버 주위를 돌고 있는 일반 유체에 접하면서 나노유체를 만드는 기술이다

*Corresponding Author : [Tel : +82-52-259-2231; E-mail : jckimpml@ulsan.ac.kr]

(Argonne National Lab.). 이 기술은 나노입자를 직 접 유체내에서 제조함으로써, 나노입자의 산화를 방 지하여 고순도의 나노유체를 제조할수 있으며, 또한 취급중의 응집을 피할 수 있는 장점이 있다. 그러나, 나노유체의 제작 시간이 매우 오래 걸려서 대량생산 이 어렵다는 단점이 있다[1, 6, 7].

최근 본 연구그룹은 고순도 금속 나노분말을 제조 하는 전기선폭발법(Electrical Explosion of Wire, EEW)을 응용하여, 전기선폭발을 유체 내에서 일으켜, 나노금속분말이 분산되게 하는 1단계 나노유체 제조 공정에 대하여 연구개발을 진행하고 있다[8]. 이 방 법으로 통해 고순도 나노금속 분말이 고분산된 나노 유체를 직접적으로 얻을 수 있다. 유체 내 전기선폭 발공정은 기존의 2단계 제조 방법으로 제어하기 어 려운 나노유체의 분산성과 대량생산의 문제점을 해 결할 수 있는 신공정이다. 유체 내 전기선폭발법은 ① 고순도(99.99% 이상) 와이어를 이용하여 고순도 금속 나노유체 제조 가능, ② 입자응집 제어 및 산화 방지 가능, ③ 구형의 균일한 크기의 나노분말 제조 가능, ④ 대부분의 금속 분말 및 고융점 재료, 합금 분말 제조 가능, ⑤ 환경 친화적(화학 용매나 용제 사용 배제) 공정, ⑥ 대량생산 가능, 경제성(폭발시간 1-50 μs, 금속선 장입속도 4-6 cm/sec) 가능, ⑦ 농 도 제어 용이(폭발횟수에 의한 농도 제어 용이), 100% 회수 등의 장점이 있다.

본 연구에서는 물(Deionized water: DI water)의 유체내에서 금속 은(Ag) 나노분말 분산 유체를 제조 하고 그 제조된 유체의 특성을 제조 공정변수에 따 라 분석, 나노분말이 균일하게 고분산된 나노유체 제 조에 관한 신 공정을 제시하였다.

2. 실험방법

본 연구에서는 유체 내 전기선폭발공정을 이용하 여 은 나노 입자 분산 유체를 제조하였다. 그림 1은 유체내 전기선 폭발 공정의 모식도를 보여준다.

사용한 Ag 금속선(순도: 99.99%, 신영금속(주))은

Table	1.	Summary	of	experimental	details
-------	----	---------	----	--------------	---------

Fig. 1. Schematic diagram of experimental setup for the wire explosion process in liquid.

직경이 0.3 mm이며, DI water 용매내에서 3 kV 전 압을 가하여 500회 폭발로 3L의 나노유체를 제조하 였다(표 1에서는 제조 조건을 나타내었다).

유체내 전기선 폭발법으로 Ag 나노분말을 제조 시, 분말들의 분산안정성을 증진하기 위하여, 화학적 분 산법과 물리적인 분산법을 적용하였다. 화학적 방법 으로는 분산안정제를 사용하여 입자간의 반발력을 증 진시켰다. 사용한 분산제의 종류는 Tween80(polyoxyethylen sorbiton monstearate) 이다. 물리적 방법 으로는 분산제를 첨가하지 않은 은나노 유체와 분산 제 Tween80을 첨가한 은 나노 입자유체를 각각 물 리적 교반기를 이용하여 15분, 30분 동안 분산 (stirring)시켰다. 또한 초음파분산기(ultra-sonicator)를 이용하여 60분간 초음파를 가해주어 용액의 분산도 를 비교하였다. 그림 2에 분산제어 실험조건을 나타 내었다.

유체 내 전기선폭발법으로 제조된 나노금속입자유체 를 Zeta potential(ELSZ series, Otsuka Electronics) 와 입도분석기를 이용하여, 표면극성 분석에 의한 분 산도 측정과 입자크기를 측정하였다. 제타전위는 은 나노유체의 pH를 3~11까지 변화를 주면서 pH에 따

	Diamter of Wire (mm)	Solution	Solution Vol. (mL)	Applied Voltage (kV)	Number of Explosion
Ag	0.3	DI water	3,000	3.0	500

Journal of Korean Powder Metallurgy Institute

Fig. 2. Mechanical and chemical dispersion treatments of Ag nanofluid after explosion.

른 제타전위를 살펴보았다. 또한 분말형상과 크기 관 찰는 FE-SEM, TEM으로 관찰하였다. TEM 분석은 제조된 나노금속입자유체를 탄소 코팅 Cu grid를 이 용하여 건조시킨 후 관찰하였다.

순수한 DI water에서 제조된 은나노유체와 소량 의 분산제가 첨가된 은나노유체의 열전도도를 측정 하였다. 열전도도는 열전도도측정기(Thermophysical Properties Analyzer, TPA-501, Sweden)을 사용하여 측정하였으며, 측정원리는 hot-disk법을 이용한 것이다.

3. 실험결과 및 고찰

유체 내 전기선폭발법으로 제조한 은나노분말의 입 도분석기 측정결과 약 88.8 nm이었다. 제조된 은나 노유체의 분산성을 제타전위 측정을 통해 -46.8 mV 의 전위를 가짐을 확인 하였다. 표 2에서는 제조된 분말의 입자크기와 제타전위 값을 보여준다. 일반적 으로 제타전위 값은 제타전위의 등전점, 즉 0의 값에 서는 정전기적 반발력의 감소로 입자의 응집이 발생 함으로, 제타전위의 절대값이 클수록 입자들이 유체 내에서 고르게 분산되어 있다고 알려져 있다. 따라서

 Table 2. Paticle size and Zeta potential of the as-prepared
 Ag nanofluid

Particle size(nm)	Zetal-potential(mV)
88.8	-46.86

본 연구의 전기선 폭발공정으로 제조한 Ag 분말은 제타전위가 -46.8 mV로 매우 큰값을 가지므로, 분산 성이 우수함을 보여준다.

그림 3의 (a), (b)는 제조된 은 나노분말의 크기와 형상을 보여준다. 분말들의 형상은 완전한 구형을 이 루고 있지 않으나, 비교적 균일한 크기분포를 보여준 다. 일부 100 nm 이상의 큰 분말들이 확인되나 대부 분 100 nm 이하의 크기를 가짐을 확인할 수 있었다. TEM 분석(그림 3의 (b))에서는 약 50 nm급의 입자 들이 서로 약하게 응집되어 있음을 보여준다. 일반적 으로 분말의 형상과 크기를 직접 관찰할 수 있는 FE-SEM과 TEM은 시편준비 과정에서 유체를 건조

Fig. 4. XRD result of Ag powders produced in D.I. water.

Fig. 3. FE-SEM and TEM micrographs of Ag powders produced in D.I. water.

pН	Zeta potential(mV)
3.03	-13.41
4.91	-6.15
6.04	-19.32
9.08	-19.99
10.98	-20.40

Table	3.	Zeta	potential	results	with	рH
Indic	<i>.</i> .	2000	potential	results		PII

하여, 입자를 채취하기 때문에, 건조 중에 분말들은 응집이 발생한다. 그림 3의 미세조직상의 응집은 시 편준비과정 중에 발생한 것이다.

그림 4는 제조된 Ag 유체를 건조한 후 Ag 분말 만을 채취하여 XRD로 분석한 결과이다. 상분석 한 결과 합성된 금속분말은 정확하게 Ag 피크를 보여주 고, 결정성도 매우 잘 유지함을 보여준다. 합성 중에 분말의 산화는 발생하지 않아 고순도를 유지함을 알 수 있다.

표 3은 은나노 입자유체에 NaOH과 HCI를 첨가 하여, pH를 변화시키면서, 제조된 입자의 제타전위를 측정한 결과이다. 제타전위값에서 pH에 따른 상하 대 칭을 보여주는 등전점(제타전위값이 0)은 구할 수 없 었다. pH가 알칼리성과 강산성으로 변화하면서 제타 전위 절대값은 20이하로 작아짐으로써 분말의 분산 성이 떨어짐을 확인할 수 있었다.

교반기, 초음파 교반기 및 TWEEN 80 분산제를 사용하여 분산 처리한 은 나노입자 유체의 색상은 용 매의 종류, 입자의 크기나 형상 등의 영향으로 다르 게 나타났다. 분산제를 첨가하지 않고 단지 물리적인 에너지만 가하여 제조된 유체의 경우, 제조 후 즉시 모두 침전되었다. 초음파나 Blade 회전이 유체 내의 분산된 콜로이드 입자의 브라운 운동(Brownian motion)을 방해하여 Brownian 응집(coagulation)을 유도한 것으로 사려된다. 분산제를 첨가한 경우의 입 자크기와 제타전위 값을 그림 5(a), (b)에 나타내었다. 순수한 DI water에서 제조된 유체의 경우 입자크기 가 88.8 nm이었으나, 분산제를 첨가한 경우에는 61 nm의 크기를 가졌다. 분산제를 첨가한 경우, 첨가하 지 않았을 때와 비교하여 초기분산 정도는 우수하였 으나, 분산성이 오래 지속되지 않았으며 제조 후 초 기에 침전되는 양이 상대적으로 많은 것을 확인하였 다. 제타전위 값에서 나타나는 것처럼 분산안정성은 낮아지는 것을 확인하였다. 순수한 DI water에서 제 조한 경우의 제타전위 값은 -46.8 mV이었으나, 분산 제를 첨가한 경우에는 -13.0 mV로 음전하를 여전히 띠고 있으나 분산도는 저하되었다.

주사전자현미경과 투과전자현미경으로 관찰한 결과 를 살펴보면(그림 6), 입자는 구형이며 입자들이 응 집되어 있는 것을 확인할 수 있다. 응집도는 분산제 가 첨가되지 않고 교반기를 사용하였을 때 가장 심 하게 나타났으며, 분산제를 첨가한 경우에 첨가하지 않았을 경우보다 조금 더 분산상태가 우수한 것으로 확인된다.

나노유체는 기존의 열전달 유체들이나 마이크론 크 기의 금속성 입자들을 함유하고 있는 유체들과 비교 해 볼 때 월등하게 높은 열전도도를 보여줄 것으로 예상되었다. 나노 크기의 입자는 넓은 표면적으로 인

Fig. 5. Particle size and Zeta potential of the as-prepared Ag nanofluid with dispersion treatments (DI-Deionized water, DIT-Deionize water+Tween 80, DIT 15-Deionize water+Tween 80+Stirring 15 min., DITU-Deionize water+Tween 80+Ultra sonication).

Journal of Korean Powder Metallurgy Institute

Fig. 6. FE-SEM & TEM micrographs of Ag nanofluids after chemical and physical dispersion treatments.

Material	K(W/m.K)	Material	K(W/m.K)
Nonmetallic liquids - Water	0.613	Ag powder + water	1.335
- engine oli	0.145	Ag powder + water + surfactant	1.305

Fig. 7. Thermal conductivity of law solutions and Ag nanofluid produced by wire explosion in liquid.

해 마이크론 분말과 비교하여 열전달 능력이 더욱 크 고, 작은 크기로 인해 분산안정성도 더 우수하다. 또 한 마이크론 크기의 입자들은 유체통로에서 막힘 현 상과 같은 문제들 때문에 실제적으로 열전달장치에 사용하기가 쉽지 않으나, 나노 크기의 입자들은 막힘 문제가 없이 열전도도를 크게 향상시킬 수 있다[1].

제조한 은 나노입자 유체의 열전도도 결과를 살펴 보면(그림 7), 각각 1.335 W/mK, 1.305 W/mK이다. 일반 물의 열전도도은 0.613 K/mK인데 비해, 은나 노입자가 첨가되었을 때 열전도도가 2배 이상 향상 되는 것을 확인하였다. 또한, 제타전위 절대 값이 높 은, 즉 분산도가 높을수록 열전도율은 증가한다.

4. 결 론

유체 내 전기선폭발법의 1단계 공정으로 순수 물 속에서 나노 Ag 분말이 분산된 나노유체를 제조할 수 있었다. 제조된 은나노유체는 평균입도 약 88.8 nm, 제타전위값이 약 -46.8 mV의 값을 가지며 분산 성이 상당히 우수함을 확인하였다. 또한 순도가 높은 은 금속선를 사용함으로써 불순물이 첨가되지 않은 고순도의 은 나노입자를 얻을 수 있다. 전기선 폭발 공정으로 제조한 Ag 나노유체의 분산성을 제어하기 위한 후속 물리적 분산법(기계적 교반(stirring) 및 초 음파 분산) 및 분산제 첨가 화학적 분산법으로는 분 산성이 오히려 더 떨어짐을 확인할 수 있었다. pH 변화에 따른 분산성은 산성도나 알카리성으로 증가 할수록 제타전위 절대값을 감소함을 확인하였다. 전 기선 폭발 공정으로 Ag 나노 분말이 분산된 나노유 체의 전기전도도는 순수 DI water에 비하여 2배 이 상 향상됨을 확인하였다.

감사의 글

이 논문은 2007년도 정부재원(교육과학기술부 학술 연구조성사업비)으로 한국연구재단의 지원을 받아 연

Vol. 16, No. 3, 2009

구되었음(과제번호: R01-2007-000-21082-0).

참고문헌

- S. U. S. Choi: American Society of Mechanical Engineers, Developments and Applications of Non-Newtonian Flows FED, 231 (1995) 99.
- [2] X. Li, D. Zhu and X. Wang: J. colloid Interface Sci., 310 (2007) 456.
- [3] X. J Wang, D. S Zhu and S. Yang: Chemical Physics Letters, 470 (2009) 107.

- [4] D. W. Zhou: Int. J. Heat Mass Transfer, 47 (2004) 3109.
- [5] A. K. Santra, S. Sen and N. Chakraborty: In.t J. Therm. Sci., 47 (2008) 1113.
- [6] J. A Eastman, S. U. S Choi, S. Li and W Yu: Appl. Phys. Lett., 78 (2001) 718.
- [7] S. A Kumara, K. S. Meenakshi, B. R. V. Narashimhanb, S. Srikanth and G. Arthanareeswaran: Mater. Chem. Phys., 113 (2009) 57.
- [8] J. C. Kim, J. S. Kim and Y. S. Kwon: Korean Patents (2009).