Synthesis and Luminescent Characteristics of BaGa₂S₄:Eu²⁺ Phosphor by Solid-state Method # Jae Myung Kim*, Joung Kyu Park, Kyung Nam Kim, Seung Jae Lee and Chang Hae Kim Korea Research Institute of Chemical Technology, Daejeon, Korea Phone: 82-11-9993-8761, E-mail: hypnosis@krict.re.kr ## Abstract $II-III_2$ - $(S,Se)_4$ structured of phosphor have been used at various field because those have high luminescent efficiency and broad emission band. Among these phosphors, europium doped BaGa₂S₄ was prepared by solid-state method and we try to look into an application possibility due to an emissive property of UV region. Also, general sulfide phosphors were synthesized by using injurious H_2S CS_2 gas. However, this study prepared BaGa₂S₄:Eu²⁺ phosphor is addition to excess sulfur under 5% H₂/95% N₂ reduction atmosphere. So, this process could large scale synthesis because of non-harmfulness and simple process. The photo-luminescence efficiency of the prepared BaGa₂S₄:Eu²⁺ phosphor increased 20% than commercial $SrGa_2S_4$: Eu^{2+} phosphor. The prepared BaGa₂S₄:Eu²⁺ could apply to green phosphor for white LED of three wavelengths. ## 1. Introduction The ternary compounds Π - Π_2 - S_4 doped with Eu^{2^+} are very attractive for lighting and display applications. Specially $SrGa_2S_4$: Eu^{2^+} is well known as an efficient green-emitting phosphor, with excellent color coordinates (x=0.26, y=0.69) and high lumen equivalent (560 lm/W). The existing of SrGa₂S₄:Eu²⁺ phosphors have been studied as a luminous device for CRT (Cathode Ray Tube), FED (Field Emission Display) and EL (Electro-luminescence)^[1-7]. This phosphor, also, is under noticed for LED (Light Emitting Diode) phosphor, which make use of excitation characteristics of long wave region. prepared This phosphor was generally conventional synthesis method using flux. However, this method needs high heat-treated temperature, long reaction time, complex process and harmful H₂S or CS₂ gas. Based on this phosphor, we tried to substitute barium to strontium site and that observed the properties of $BaGa_2S_4$: Eu^{2+} . Also, we have synthesized $BaGa_2S_4$: Eu^{2+} phosphors using sulfide materials, and the mixture gas of 5 % $H_2/95$ % N_2 were used to avoid the H_2S or CS_2 . Peters and Baglio synthesized that under H₂S steam by BaCO₃, Ga₂O₃ and Eu₂O₃ in 1972^[1]. However, this gas is very toxic at a human's body and difficult to be treated of it. Also it has defects such as long reaction times and complicates process. Davolos attempted the synthesis at H₂S/Ar conditions from BaCO₃, Ga₂O₃ and Eu₂O₃ of high purity^[8]. Accordingly, in this study it has the purpose to make $BaGa_2S_4$: Eu^{2+} with high luminescent efficiency by only first-firing treatment without a complex process and H_2S gas. Also, we manufactured white LED by using this phosphor. So, this shows possibility to be applicable for a white LED lamp because of the high luminescent efficiency. # 2. Experimental In this study we synthesized $Ba_{1-X}Ga_2S_4$: Eu_X^{2+} (0.001 \leq X<0.3) through typical solid-state method (Fig. 1). Starting materials were prepared mainly sulfide materials, sulfide materials used calcium sulfide (BaS, 4N), gallium sulfide (Ga₂S₃, 4N) and europium sulfide (EuS, 3N). First of all, raw materials are weighted, and then mixed at mortar. After it was dried in oven at 80 $^{\circ}$ C for a hour. This precursor was fired at 600~1100 $^{\circ}$ C in a tube furnace under 5 $^{\circ}$ M H₂/95 $^{\circ}$ M N₂ mixed gas atmosphere. The crystalline of phosphor powders were analyzed by XRD (X-ray Diffractometer, Rikaku DMAX-3) with Cu-K α radiation and a Ni filter. Emission and excitation spectra of phosphor were obtained by Perkin Elmer LS50B luminescence spectrometer. Also the phosphor size and shape were observed from SEM (Scanning Electron Microscopy, JEOL JSM6360). Fig. 1. Flow chart of experimental procedure. ## 3. Results Fig. 2 shows typical PL excitation and emission spectra of $BaGa_2S_4$: Eu^{2+} phosphor by solid-state reaction. Emission spectrum was measured under 405 nm excitation wavelength for UV white light LED. First of all, case of excitation spectrum, it has high excitation band in 300 nm \sim 430 nm region which was emitted by various excitation sources. Cases of emission band, main peaks appear at 505nm wavelength due to f-d energy transition of Eu^{2+} ion. Fig. 2. Typical PL excitation and emission spectra of BaGa₂S₄:Eu²⁺ phosphor prepared by solid-state reaction. Fig. 3. PL emission spectra of BaGa₂S₄:Eu²⁺ phosphors as a function of firing temperatures. We expressed PL of $BaGa_2S_4$: Eu^{2+} phosphor according to various firing temperature in Fig. 3. The phases are slowly appeared at $700~^{\circ}\mathrm{C}$ and luminescent efficiencies are enlarged as increasing temperatures. In figure, the best good luminescent intensity appears at $975~^{\circ}\mathrm{C}$. Phosphor particles are cohered together and decrease intensity in the temperature over that. It is a result of the temperature quenching phenomenon. And the powder was melted and then we observed glasses at over $1100~^{\circ}\mathrm{C}$ temperature. Fig. 4. XRD patterns of $CaGa_2S_4$: Eu^{2+} synthesized at various temperature. In Fig. 4, we can confirm the crystalline of this through looking into the XRD patterns of BaGa₂S₄:Eu²⁺ synthesized at various temperature. At 700 °C, phosphor has the BaGa₂S₄ (25-0066) phase. Powder are formed mainly phase of this at 800 $^{\circ}$ C and show a best good crystalline at 1100 $^{\circ}$ C. Fig. 5. PL emission intensities of BaGa₂S₄:Eu²⁺ phosphors with respect to Eu²⁺ contents. The changes of emission intensity are depicted in Fig. 5 on the various Eu²⁺ concentrations. The best suitable doping concentration of Eu²⁺ was evaluated 0.05 mole. The emission intensities are decreased when over doped concentration of 0.05 mole Eu²⁺ ion because of concentration quenching. That is, emission of Eu²⁺ was absorbed another Eu²⁺ ion. It is due to structural randomicity of phosphor and chemical complexity. Especially, increases of Eu²⁺ ion were cohered or converted killer^[9]. Fig. 6. SEM photographs of BaGa₂S₄:Eu²⁺ phosphors in various firing temperature. Fig. 6 shows the morphology of BaGa₂S₄:Eu²⁺ particles in the SEM image. At 850 °C in (a), particles have irregular shapes and it show particles growth as increasing temperature. In (b) and (c), particles were formed uniform size of $5\sim10~\mu\text{m}$. In case of (d), it display cohesion phenomenon due to high thermal energy and material diffusion. Average size of this phosphor is under $10~\mu\text{m}$. For applying the LED lamp, generally best size is the interior and exterior of $20~\mu\text{m}$. Accordingly powder of BaGa₂S₄:Eu²⁺ can be used to LED lamp. Fig. 7. PL emission spectra of BaGa₂S₄:Eu²⁺ phosphors as a function of excessive sulfur. The synthesis of $BaGa_2S_4$: Eu^{2+} correspond to the stoichiometry as starting materials. But sulfide materials have characteristic of easily volatilization. Accordingly, sulfur control is very important in synthesis. Generally it was synthesized H_2S or CS_2 gas condition but it is very toxic and harmful. And in this study, we attempted simply process through 5 % $H_2/95$ % N_2 mixture gas and excess sulfur without H_2S gas. In Fig. 7, PL emission spectra of BaGa₂S₄:Eu²⁺ phosphors show as a function of excessive sulfur. The luminescent efficiencies are enlarged as increasing sulfur percentage. In figure, the best good luminescent intensity appears at excess 300 %. However, as over 300 % excessive sulfur addition decrease intensity because sulfur remain as not used reaction or not volatilized in phosphor. Fig. 8 displays relative PL emission spectra of synthesized phosphor and commercial SrGa₂S₄:Eu²⁺ phosphor. Phosphor is proportional to the area as application of LED lamp. Hence, luminescent efficiency of [BaGa₂S₄:Eu²⁺/ SrGa₂S₄:Eu²⁺] is above 120%. Fig. 8. Relative PL emission spectra of synthesized phosphor and SrGa₂S₄:Eu²⁺ phosphor. #### 4. Conclusion We obtained the best synthesis condition at 0.05 mole of Eu²⁺ concentration, under 100 cc/min reduction condition with adding of excess 300 %/wt sulfur, at 975 °C heat-treated temperature and for 3 hours. It has luminescent main peak of 505 nm and high excitation band in the range of 300 nm and 430 nm. Prepared phosphor shows higher luminescent efficiency with above 120%. Consequently, BaGa₂S₄:Eu²⁺ phosphor can be used to the UV lamp for making LED lamp, and it can be applied for bluish green phosphor with excellent luminescent efficiency. # 5. References - [1] T. E. Peter and J. A. Baglio, *J. Eletrochem. Soc.*, **119**, 230-236 (1972). - [2] P. C. Donohue and J. E. Hanlon, *J. Electrochem. Soc.*, **121** 137-142 (1974). - [3] L. Eichenauer et al, *Phys. Stat. Sol. A.*, **153**, 515-527 (1996). - [4] P. Benalloul, C. Barthou and J. Benoit, *J. Alloy and Comp.*, **275-277**, 709-715 (1998). - [5] F. Sh. Aidaev, *Inorg. Mater.*, **39**, 96-98 (2003). - [6] Y. D. Jiang et al, *Solid State Commun.*, **113**, 475-478 (2000). - [7] S. Yang et al, *Appl. Phys. Lett.*, **72**, 158-160 (1998). - [8] M. R. Davolos et al, *J. Solid State Chem.*, **83** 316-323 (1989). - [9] D. L. Dexter and J. H. Schulman, *J. Chem. Phys.*, **22**, 1063-1070 (1954).