• 제목/요약/키워드: Field emission cathode

검색결과 148건 처리시간 0.034초

Fabrication and Electrical Characteristics of a Lateral type GaN Field Emission Diode

  • Lee, Jae-Hoon;Lee, Hyung-Ju;Lee, Myoung-Bok;Hahm, Sung-Ho;Lee, Jung-Hee;Choi, Kue-Man
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.647-650
    • /
    • 2002
  • A lateral type GaN field emission diodes were fabricated by utilizing metal organic chemical vapor deposition (MOCVD). In forming the pattern, two kinds of procedures were proposed: a selective etching method with electron cyclotron resonance-reactive ion etching (ECR-RIE) or a simple selective growth by utilizing $Si_3N_4$ film as masking layer. The fabricated device using the ECR-RIE exhibited electrical characteristics such as a turn-on voltage of 35 V for 7 ${\mu}m$ gap and an emission current of ${\sim}580$ nA/10tips at anode-to-cathode voltage of 100 V These new field emission characteristics of GaN tips are believed to be due to a low electron affinity as well as the shorter inter-electrode distance.

  • PDF

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

Active-Matrix Field Emission Display with Amorphous Silicon Thin-Film Transistors and Mo-Tip Field Emitter Arrays

  • Song, Yoon-Ho;Hwang, Chi-Sun;Cho, Young-Rae;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • ETRI Journal
    • /
    • 제24권4호
    • /
    • pp.290-298
    • /
    • 2002
  • We present, for the first time, a prototype active-matrix field emission display (AMFED) in which an amorphous silicon thin-film transistor (a-Si TFT) and a molybdenum-tip field emitter array (Mo-tip FEA) were monolithically integrated on a glass substrate for a novel active-matrix cathode (AMC) plate. The fabricated AMFED showed good display images with a low-voltage scan and data signals irrespective of a high voltage for field emissions. We introduced a light shield layer of metal into our AMC to reduce the photo leakage and back channel currents of the a-Si TFT. We designed the light shield to act as a focusing grid to focus emitted electron beams from the AMC onto the corresponding anode pixel. The thin film depositions in the a-Si TFTs were performed at a high temperature of above 360°C to guarantee the vacuum packaging of the AMC and anode plates. We also developed a novel wet etching process for $n^+-doped$ a-Si etching with high etch selectivity to intrinsic a-Si and used it in the fabrication of an inverted stagger TFT with a very thin active layer. The developed a-Si TFTs performed well enough to be used as control devices for AMCs. The gate bias of the a-Si TFTs well controlled the field emission currents of the AMC plates. The AMFED with these AMC plates showed low-voltage matrix addressing, good stability and reliability of field emission, and good light emissions from the anode plate with phosphors.

  • PDF

Enhancement of Photocurrent Generation by C60-encapsulated Single-walled Carbon Nanotubes in Ru-sensitized Photoelectrochemical Cell

  • Lee, Jung-Woo;Park, Tae-Hee;Lee, Jong-Taek;Jang, Mi-Ra;Lee, Seung-Jin;Kim, Hee-Su;Han, Sung-Hwan;Yi, Whi-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2689-2693
    • /
    • 2012
  • Single-walled carbon nanotubes (SWNTs) and $C_{60}$-encapsulated SWNTs ($C_{60}@SWNTs$) are introduced to Ru-sensitized photoelectrochemical cells (PECs), and photocurrents are compared between two cells, i.e., an $RuL_2(NCS)_2$/DAPV/SWNTs/ITO cell and an $RuL_2(NCS)_2$/DAPV/$C_{60}@SWNTs$/ITO cell. [L = 2,2'-bipyridine-4,4'-dicarboxylic acid, DAPV = di-(3-aminopropyl)-viologen, and ITO = indium-tin oxide] The photocurrents are increased by 70.6% in the presence of $C_{60}@SWNTs$. To explain the photocurrent increase, the reverse-field emission method is used, i.e., $RuL_2(NCS)_2$/DAPV/SWNTs/ITO cell (or $RuL_2(NCS)_2$/DAPV/$C_{60}@SWNTs$/ITO cell) as an anode and a counter electrode Pt as a cathode in the external electric field. The improved field emission properties, i.e., ${\beta}$ (field enhancement factor) and emission currents in the reverse-field emission with $C_{60}@SWNTs$ indicate the enhancement of the PEC electric field, which implies the improvement of the electron transfer rate along with the reduced charge recombination in the cell.

Field Emission-Back Light Unit Fabricated Using Carbon Nanotube Emitter

  • Kim, H.S.;Lee, J.W.;Lee, S.K.;Lee, C.S.;Jung, K.W.;Lim, J.H.;Moon, J.W.;Hwang, M.I.;Kim, I.H.;Kim, Y.H.;Lee, B.G.;Choi, Y.C.;Seon, H.R.;Lee, S.J.;Park, J.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.277-280
    • /
    • 2007
  • Field emission-back light unit (FE-BLU) was fabricated using carbon nanotube (CNT) emitter. Local dimming and local brightening techniques were achieved, which results in very high contrast ratio. In addition, the motion blur phenomenon, one of the serious problems of liquid crystal display (LCD) with cold cathode fluorescent lamp (CCFL)-BLU, was removed from LCD-TV by using FE-BLU.

  • PDF

A Robust Process for the Fabrication of Field Emission Backlights

  • Marquardt, B.;Cojucaru, C.S.;Xavier, S.;Legagneux, P.;Pribat, D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1606-1609
    • /
    • 2008
  • In this paper, we present a novel process for the realization of large area, low cost field emission cathodes. The process makes use of alumina substrates, which are anodically oxidized in order to yield porous structures capable of hosting metal catalyst nanoparticles. By carefully controlling the final stage of the anodisation as well as the electrodeposition conditions, it is possible to fine tune the density of such catalysts in the range of $10^8-10^9/cm^2$. The catalytic growth of CNTs is subsequently performed at low temperature (${\sim}\;600^{\circ}C$ or below, thanks to the use of $H_2O$), using plasma enhanced chemical vapour deposition. There is no lithography need to make the cathode and current densities of ${\sim}\;1mA/cm^2$ are easily obtained.

  • PDF

CNT 전계방출용 펄스전원장치 개발에 관한 연구 (A study on the development of pulse generator system for CNT field emission)

  • 김정훈;정혜만;류명효;김종현;유동욱;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.166-168
    • /
    • 2005
  • 본 논문에서는 고효율 고휘도의 신광원을 개발함에 있어, 전계방출(Field Emission) 원리를 이용하여, 이미터로서의 성능이 입증된 CNT(Carbon Nanotube, 탄소나노튜브)를 이용한 평판 형태의 신개념 램프에 대한 펄스전원장치에 대한 연구를 하였다. 특히, Triode형 CNT 램프 구동을 위해서는 캐소드(cathode)와 게이트(gate) 사이에서 양방향(Bi-polar) 저전압 펄스가 필요하고 애노드(anode)에 직류 고전압이 필요하여 이를 위한 저전압 펄스 및 직류 고전압 전원장치에 대한 개발을 연구하였다.

  • PDF

FED 용 Data Driver IC에 관한 연구 (A Study on Data Driver IC for Field Emission Display)

  • 장영민;이진석;이준성;조준동
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.797-800
    • /
    • 2004
  • FED(Field Emission Display)는 CRT(Cathode Ray Tube)의 화질과 LCD(Liquid Crystal Display)와 같은 FPD(Flat Panel Display)의 경량, 박형의 장점을 만족시키는 차세대 Display 소자로서 주목을 받고 있다. 본 논문은 저항열을 이용하여 256 Gray-Scale Level을 출력하는 8 비트 FED Data Driver IC 설계에 관한 것이다. 즉, 저항열과 D/A 변환기를 통하여 디지털 입력 데이터에 따른 아날로그 출력 데이터를 갖는 FED 용 Data Driver IC이다. 본 논문에서 설계된 Driver IC는 집적도를 높여 Output Channel 수를 증가시키는 것을 목표로, 하이닉스 0.6um High Voltage 공정을 사용하였으며, 8 비트 RGB 데이터 입력과 40V 구동전압에서 동작하도록 설계하였다.

  • PDF

Characterization of Lateral Type Field Emitters with Carbon-Based Surface Layer

  • Lee, Myoung-Bok;Lee, Jae-Hoon;Kwon, Ki-Rock;Lee, Hyung-Ju;Hahm, Sung-Ho;Lee, Jong-Hyun;Lee, Jung-Hee;Choi, Kyu-Man
    • Journal of Information Display
    • /
    • 제2권3호
    • /
    • pp.60-65
    • /
    • 2001
  • Lateral type poly-silicon field emitters were fabricated by utilizing the LOCOS (Local Oxidation of Silicon) process. For the implementation 'of an ideal field emission device with quasi-zero tunneling barrier, a new and fundamental approach has used conducted by introducing an intelligent carbon-based thin layer on the cathode tip surface via a field-assisted self-aligning of carbon (FASAC) process. Fundamental lowering of the turn-on field for the electron emission was feasible through the control of both the tip shape and surface barrier height.

  • PDF

Relationship between Field Emission Property and Composition of Carbon Nanotube Paste for Large Area Cold Cathode

  • Choi, Jong-Hyung;Kang, Sung-Kee;Han, Jae-Hee;Yoo, Ji-Beom;Park, Chong-Yun;Nam, Joong-Woo;Kim, J.M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.852-854
    • /
    • 2003
  • CNT paste was fabricated by mixture of multi-walled carbon nanotubes (MWNT) powder, organic vehicles and inorganic binder. Then firing process was performed at different temperature under air and $N_{2}$ atmosphere. It was found that emission property of CNT paste was changed by firing temperature and time due to interaction between remained resins and CNT powder. We obtained good emission property from CNT paste treated at $350^{\circ}C$ for 10 min.

  • PDF