• Title/Summary/Keyword: Field emission cathode

Search Result 148, Processing Time 0.019 seconds

Emission Profile Studies of Thermionic Cathodes and Field Emitters

  • Tawa, Yasuhiro;Kai, Junjiro;Tama, Masayoshi;Ijima, Kenji;Saito, Tsunenari
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.371-375
    • /
    • 2002
  • Emissions of thermionic cathodes and field emitters were studied using a cathode emission profiler which works based on the anode scanning method. Findings about impregnated cathodes in thermal activation and gas poisoning processes are shown. Effects of surface treatments for field emitters are studied from the viewpoint of emission profiles and characteristics of the emitters.

  • PDF

Effect of Electrode Structures on Electron Emission of the $Pb(Zr_{0.56}Ti_{0.44})O_3$ Ferroelectric Cathode ($Pb(Zr_{0.56}Ti_{0.44})O_3$ 강유전체 음극의 전극 모형에 따른 전자 방출 특성)

  • Seo, Min-Su;Hong, Ki-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.699-707
    • /
    • 2010
  • Electric-field-induced electron emission from the three kinds of $Pb(Zr_{0.56}Ti_{0.44})O_3$ ferroelectric cathodes with different electrode structure has been investigated. Regardless of the electrode structures, a threshold field of the each cathode was 2.5-2.6kV/mm, which is 3 times higher than the coercive field of $Pb(Zr_{0.56}Ti_{0.44})O_3$ material. Although the waveform of the electron currents was affected by the structure of the electrode, no significant difference for the emission properties such as the peak current and the pulse width was observed from the three kinds of the cathodes. However, the current density of the cathode was dependent on the electrode structure. From the simulation of electric field distribution, the surface flashover, and the injury region of the cathode surface, it was proved that the prime electrons were initiated at the electrode-ceramic-vacuum triple point by field emission and the emission currents were strongly enhanced by the surface plasma.

Effects of Materials Composition in CNT Paste on Field Emission Properties in Carbon Nanotube Cathodes (인쇄용 페이스트의 조성변화가 탄소나노튜브 캐소드의 전계방출 특성에 미치는 영향)

  • Choi, Woo-Suk;Shin, Heo-Young;Kim, Dong-Hee;Ahn, Byung-Gun;Chung, Won-Sub;Lee, Dong-Gu;Cho, Young-Rea
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.663-667
    • /
    • 2003
  • The effects of paste materials on field emission properties in a carbon nanotube(CNT) cathode were investigated for high-efficient field emission displays. The major components in CNT paste for screen printing were a metallic Ag-paste, a dielectric glass-frit and CNT ink. The emission current from the cathode by an electron tunneling effect increased with an increase in the dielectric material fraction in the CNT paste, which is related to an increase of field enhancement factor in Fowler-Nordheim equation. The surface treatment used, after soft baking of the screen-printed CNT films, greatly affected the decrease in the turn-on field in CNT cathode and the uniformity of emission sites over the entire CNT film area.

Low Voltage-Driven CNT Cathode and It's Applications

  • Lee, Chun-Gyoo;Lee, Sang-Jo;Cho, Sung-Hee;Chi, Eung-Joon;Lee, Byung-Gon;Jeon, Sang-Ho;Ahn, Sang-Hyuck;Hong, Su-Bong;Choe, Deok-Hyeon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.851-854
    • /
    • 2004
  • By approaching the counter electrode to the CNT emitter, remarkable reduction of the cathode operating voltage has been accomplished in the under-gate CNT cathode structure. The peak emission current density of 2.5 ms/$cm^2$, which is sufficient for high brightness CNT field emission display, was obtained at the cathode-to-gate voltage of 57 V when the CNT-to-counter electrode gap was 2.2 ${\mu}m$. The gate current was less than 10 % of the anode current. The CNT cathode with low driving voltage can help the cost-effective field emission display implemented.

  • PDF

Effect of Surface Morphology and Adhesion Force on the Field Emisson Properties of Carbon Nanotube Based Cathode (탄소나노튜브 캐소드의 전계방출 특성에 대한 표면 형상과 부착력의 영향)

  • Jung, Hyuk;Cho, You-Suk;Kang, Young-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.277-282
    • /
    • 2008
  • The effects of the field emission property in relation to the surface morphology and adhesion force were investigated. The single-wall-nanotube-based cathode was obtained by use of an in-situ arc discharge synthesis method, a screen-printing method and a spray method. The morphologies of the formed emitter layers were very different. The emission stability and uniformity were dramatically improved by employing an in-situ arc discharge synthesis method. In this study, it was confirmed that the current stability and uniformity of the field emission of the cathode depend on the surface morphology and adhesion force of the emitters. The current stability of the field emission device was also studied through an electrical aging process by varying the current and electric field.

Effect of Asymmetric Electrode Structure on Electron Emission of the Pb(Zr0.8Ti0.2)O3 Ferroelectric Cathode (Pb(Zr0.8Ti0.2)O3강유전 음극에서 비대칭 전극구조가 전자 방출 특성에 미치는 영향)

  • 박지훈;김용태;윤기현;김태희;박경봉
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.92-98
    • /
    • 2002
  • To investigate the electrode structural effect on the ferroelectric electron emission, the electric field distribution in a 2-dimensional structure was calculated as a function of upper electrode diameter, and the switching charge density and emission charge were measured simultaneously. The simulation of the electric field distribution showed that an asymmetric electrode structure could cause a stray field on the bare surface of the ferroelectric cathode near the edge of upper electrode. The distance of stray field from the electrode edge increased with increasing ferroelectric thickness, but it did not depend on the upper electrode diameter. The switching charge density increased more on the cathode with smaller upper electrode diameter. This was attributed to the stray field on the bare ferroelectric surface near the electrode edge, because the stray field for the asymmetric ferroelectric cathode enhanced polarization switching near the electrode edge. From the switching charge density, the distance of stray field from the electrode edge was calculated as about 11-14${\mu}{\textrm}{m}$. The threshold voltage of electron emission was 61-68 kV/cm, which was almost 3 times lager than the coercive voltage. The threshold voltage was not determined just by coercive voltage, but by strength and distance of the stray-field, which largely depended on the geometrical structure of ferroelectric cathode.

Spindt Cathode Tip Processing to Enhance Emission Stability and High-Current Performance

  • Spindt, C.A.;Schwoebel, P.R.;Holland, C.E.
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.44-47
    • /
    • 2001
  • The extracted field emission current can be used to controllably heat microfabricated cold field emission cathode tips. The heating can be sufficient to smooth and recrystallize the tip surface by surface self-diffusion, and at least partially clean the surface of contaminants by thermal desorption. Self-heating not only allows for the achievement and maintenance of stable emission characteristics, but can be used to make the current-voltage characteristics of microfabricated field emitter tips nearly identical to one another. The resulting improvement in emission uniformity will allow for more reliable array operation at increased electron emission current densities.

  • PDF

Active-Matrix Cathodes though Integration of Amorphous Silicon Thin-Film Transistor with triode -and Diode-Type field Emitters

  • Song, Yoon-Ho;Cho, Young-Rae;Hwang, Chi-Sun;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.72-77
    • /
    • 2001
  • Amorphous silicon thin-film transistors (a-Si TFTs) were incorporated into Mo-tip-based triode-type field emitters and diode-type ones of carbon nanotubes for an active-matrix cathode (AMC) plate of field emission displays. Also, we developed a novel surface-treatment process for the Mo-tip fabrication, which gleatly enhanced in the stability of field emission. The field emission currents of AMC plates on glass substrate were well controlled by the gate bias of a-Si TFTs. Active-matrix field emission displays (AMFEDs) with these AMC plates were demonstrated in a vacuum chamber, showing low-voltage matrix addressing, good stability and reliability of field emission, and highly uniform light emissions from the anode plate with phosphors. The optimum design of AMFEDs including a-Si TFTs and a new light shield/focusing grid is discussed.

  • PDF

Advances in High Emission Sc2O3-W Matrix Cathode Materials

  • Wang, Jinshu;Yang, Yunfei;Liu, Wei;Wang, Yiman
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.20-26
    • /
    • 2016
  • Our work on $Sc_2O_3-W$ matrix dispenser cathodes had been reviewed in this paper. The cathode with uniform distribution of $Sc_2O_3$ had been obtained using liquid-liquid doping method. The cathode had excellent emission property, i.e., the emission current density in pulse condition could reach over $35A/cm^2$. It was found that the cathode surface was covered by a Ba-Sc-O active substance multilayer with a thickness of about 100 nm, which was different from the monolayer and semiconducting layer in thickness. Furthermore, the observation results displayed that nanoparticles appeared at the growth steps and the surface of tungsten grains of the fully activated cathode. The calculation result indicated that the nanoparticles could cause the increase of local electric field strengths. We proposed the emission model that both the Ba-Sc-O multilayer and the nanoparticles distributing mainly on the growth steps of the W grains contributed to the emission. The future work on this cathode has been discussed.

Characterization of field emission behavior from vitreous carbon (유리화 비정형 탄소의 전계방출 거동)

  • 안상혁;이광렬;은광용
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.122-129
    • /
    • 2000
  • Field emission behavior from vitreous carbon powders deposited on Mo coated glass by electro-phoretic method was investigated. Although the vitreous carbon has only $sp^2$ hybridized carbon bond, we could observe an excellent field emission behavior. Reproducible electron emission was observed without initiation process which is known to be needed in most carbon cathode materials. Critical electric field for electron emission was in the range from 3 to 4 MV/m. The effective work function was estimated to be about 0.06 eV, as obtained from the slope of Fowler-Nordheim plot. The stability of the emission behavior characterized by repeated I-V measurements, was much superior to the Si tips. We observed the possibility of full area light emission in vitreous carbon materials. This results showed that the field emission is not intimately related to the $sp^3$ hybridization of carbon, but the electrical properties of cathod/electrode interface or the conductivity of the cathode materials which required for the electron transport to the cathode surface.

  • PDF