• Title/Summary/Keyword: Field Study Properties

Search Result 3,085, Processing Time 0.035 seconds

Effect of Rock Mass Properties on Coupled Thermo-Hydro-Mechanical Responses at Near-Field Rock Mass in a Heater Test - A Benchmark Sensitivity Study of the Kamaishi Mine Experiment in Japan

  • Hwajung Yoo;Jeonghwan Yoon;Ki-Bok Min
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.23-41
    • /
    • 2023
  • Coupled thermo-hydraulic-mechanical (THM) processes are essential for the long-term performance of deep geological disposal of high-level radioactive waste. In this study, a numerical sensitivity analysis was performed to analyze the effect of rock properties on THM responses after the execution of the heater test at the Kamaishi mine in Japan. The TOUGH-FLAC simulator was applied for the numerical simulation assuming a continuum model for coupled THM analysis. The rock properties included in the sensitivity study were the Young's modulus, permeability, thermal conductivity, and thermal expansion coefficients of crystalline rock, rock salt, and clay. The responses, i.e., temperature, water content, displacement, and stress, were measured at monitoring points in the buffer and near-field rock mass during the simulations. The thermal conductivity had an overarching impact on THM responses. The influence of Young's modulus was evident in the mechanical behavior, whereas that of permeability was noticed through the change in the temperature and water content. The difference in the THM responses of the three rock type models implies the importance of the appropriate characterization of rock mass properties with regard to the performance assessment of the deep geological disposal of high-level radioactive waste.

Statistical study of turbulence from polarized synchrotron emission

  • Lee, Hyeseung;Cho, Chungyeon;Lazarian, Alexandre
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.56.1-56.1
    • /
    • 2017
  • When turbulent motions perturb magnetic field lines and produce magnetic fluctuations, the perturbations leave imprints of turbulence statistics on magnetic field. Observation of synchrotron radiation is one of the easiest ways to study turbulent magnetic field. Therefore, we study statistical properties of synchrotron polarization emitted from media with magnetohydrodynamic (MHD) turbulence, using both synthetic and MHD turbulence simulation data. First, we obtain the spatial spectrum and its derivative with respect to wavelength of synchrotron polarization arising from both synchrotron radiation and Faraday rotation. The study of spatial spectrum shows how the spectrum is affected by Faraday rotation and how we can recover the statistics of underlying turbulent magnetic field as well as turbulent density of electrons from interferometric observations that incorporate the effects of noise and finite telescopic beam size. Second, we study quadrupole ratio to quantitatively describe the degree of anisotropy introduced by magnetic field in the presence of MHD turbulence. We consider the case that the synchrotron emission and Faraday rotation are spatially separated, as well as the situation that the sources of the synchrotron radiation and thermal electrons causing Faraday rotation exist in the same region. In this study, we demonstrate that the spectrum and quadrupole ratio of synchrotron polarization can be very informative tools to get detailed information about the statistical properties of MHD turbulence from radio observations of diffuse synchrotron polarization.

  • PDF

Chemical and Biological Properties of Soils Converted from Paddies and Uplands to Organic Ginseng Farming System in Sangju Region

  • Lim, Jin-Soo;Park, Kee-Choon;Eo, Jinu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.500-505
    • /
    • 2014
  • In recent years, organic ginseng cultivation has increased because customers prefer organic ginseng products due to the morphological quality as well as the safety such as the residuals of chemically-synthesized pesticides. Therefore, some of paddy and upland fields were converted into organic ginseng fields. Soil chemical properties, soil microflora, and soil-inhabiting animals were investigated in paddy-converted and upland organic ginseng fields in Sangju city, Korea. There was few difference in the soil chemical properties, and the soil nutrient concentrations, such as nitrate-N, Av. $P_2O_5$ between the two field types, and exchangeable cations such as K and Ca were within the ranges which are recommended by the standard ginseng-farming manual. Changes in microflora were also assessed by analyzing phospholipid fatty acid composition. Overall, indicators of microbial groups were greater in the upland field than in the paddy-converted soil, but they were not significantly different. In addition, there was no significant change in the abundance of nematodes, collembolans, and mites between the two field types probably because of the high variation within the field types. In this study, it was suggested that soil chemical and biological properties for organic ginseng cultivation were greatly influenced by the variation of topography and soil management practices rather than field types. Further study may be needed to investigate the influence of these factors on soil chemical and biological properties in organic ginseng soils.

Computer Tomography as a Tool for Physical Analysis in an Anthropogenic Soil

  • Chun, Hyen Chung;Park, Chan Won;Sonn, Yeon Kyu;Cho, Hyun Joon;Hyun, Byung Keun;Song, Kwan Cheol;Zhang, Yong Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.549-555
    • /
    • 2013
  • Human influence on soil formation has dramatically increased as the development of human civilization and industry. Increase of anthropogenic soils induced research of those soils; classification, chemical and physical characteristics and plant growth of anthropogenic soils. However there have been no reports on soil pore properties from the anthropogenic soils so far. Therefore the objectives of this study were to test computer tomography (CT) to characterize physical properties of an anthropogenic paddy field soil and to find differences between natural and anthropogenic paddy field soils. Soil samples of a natural paddy field were taken from Ansung, Gyeonggi-do (Ansung site), and samples of an anthropogenic paddy field were from Gumi in Gyeongsangnam-do (Gasan) where paddy fields were remodeled in 2011-2012. Samples were taken at three different depths and analyzed for routine physical properties and CT scans. CT scan provided 3 dimensional images to calculate pore size, length and tortuosity of soil pores. Fractal analysis was applied to quantify pore structure within soil images. The results of measured physical properties (bulk density, porosity) did not show differences across depths and sites, but hardness and water content had differences. These differences repeated within the results of pore morphology. Top soil samples from both sites had greater pore numbers and sizes than others. Fractal analyses showed that top soils had more heterogeneous pore structures than others. The bottom layer of the Gasan site showed more degradation of pore properties than ploughpan and bottom layers from the Ansung site. These results concluded that anthropogenic soils may have more degraded pore properties as depth increases. The remodeled paddy fields may need more fundamental remediation to improve physical conditions. This study suggests that pore analyses using CT can provide important information of physical conditions from anthropogenic soils.

Enhanced Field Emission Behavior from Boron-Doped Double-walled Carbon Nanotubes Synthesized by Catalytic Chemical Vapor Deposition

  • Kang, J.H.;Jang, H.C.;Choi, J.M.;Lyu, S.C.;Sok, J.H.
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.9-12
    • /
    • 2012
  • Attempts to dope carbon nanotube (CNT) with impurities in order to control the electronic properties of the CNT is a natural course of action. Boron is known to improve both the structural and electronic properties. In this report, we study the field emission properties of Boron-doped double-walled CNT (DWCNT). Boron-doped DWCNT films were fabricated by catalytic decomposition of tetrahydrofuran and triisopropyl borate over a Fe-Mo/MgO catalyst at $900^{\circ}C$. We measured the field emission current by varying the doping amount of Boron from 0.8 to 1.8 wt%. As the amount of doped boron in the DWCNT increases, the turn-on-field of the DWCNT decreases drastically from 6 V/${\mu}m$ to 2 V/${\mu}m$. The current density of undoped CNT is 0.6 mA/$cm^2$ at 9 V, but a doped-DWCNT sample with 1.8 wt% achieved the same current density only at only 3.8 V. This shows that boron doped DWCNTs are potentially useful in low voltage operative field emitting device such as large area flat panel displays.

Improvement Study on Vertical Growth of Carbon Nanotubes and their Field Emission Properties at ICPCVD (유도결합형 플라즈마 화학기상증착법에서 탄소나노튜브의 수직성장과 전계방출 특성 향상 연구)

  • 김광식;류호진;장건익
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.713-719
    • /
    • 2002
  • In this study, the vertically well-aligned CNTs were synthesized by DC bias-assisted inductively coupled plasma hot-filament chemical vapor deposition (ICPHFCVD) using radio-frequence plasma of high density and that CNTs were vertically grown on Ni(300 )/Cr(200 )-deposited glass substrates at 58$0^{\circ}C$. This system(ICPHFCVD) added to tungsten filament in order to get thermal decompound and DC bias in order to vertically grow to general Inductively Coupled Plasma CVD. The grown CNTs by ICPHFCVD were developed to higher graphitization and fewer field emission properties than those by general ICPCVD. In this system, DC bias was effect of vortical alignment to growing CNTs. The measured turn-on fields of field emission property by general ICPCVD and DC bias-assisted ICPHFCVD were 5 V/${\mu}{\textrm}{m}$ and 3 V/${\mu}{\textrm}{m}$, respectively.

Fundamental Study on Performance Experiment of ER Clutch (ER클러치의 성능실험에 관한 기초적 연구)

  • 김도태;장성철;염만오;김태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.66-71
    • /
    • 2001
  • In this work, an ER clutch has been constructed and its characteristics have been evaluated by adapting an electro-rheological fluid(ERF) as an operating medium. ER fluids are suspensions which show an abrupt increase in rheological properties under electric fields. An ER clutch system using ER fluid is a new conception device because an apparent viscosity of ER fluid can be changed by apply an electric field. As a first, Bingham properties of ER fluids are experimentally distilled as a function of electric field. We use the disk type ER clutch in which the ER fluid fills the annular space between a pair of coaxial disk electrodes and experiment results show that the measured revolution per minute was increased with the increase of the electric field. The ER fluid used in the present study consists of weight fraction 35% in zeolite suspended silicone oil.

  • PDF

Mapping Within-field Variability Using Airborne Imaging Systems: A Case Study from Missouri Precision Agriculture

  • Hong, S.Y.;Sudduth, K.A.;Kitchen, N.R.;Palm, H.L.;Wiebold, W.J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1049-1051
    • /
    • 2003
  • This study investigated the use of airborne image data to provide estimates of within -field variability in soil properties and crop growth as an alternative to extensive field data collection. Hyperspectral and multispectral images were acquired in 2000, 2001, and 2002 for central Missouri experimental fields. Data were converted to reflectance using chemically-treated reference tarps with known reflectance levels. Geometric distortion of the hyperspectral pushbroom sensor images was corrected with a rubber sheeting transformation. Statistical analyses were used to relate image data to field-measured soil properties and crop characteristics. Results showed that this approach has potential; however, it is important to address a number of implementation issues to insure quality data and accurate interpretations.

  • PDF

Fabrication of carbon nanotube fibers with nanoscale tips and their field emission properties

  • Shin, Dong-Hoon;Song, Ye-Nan;Sun, Yu-Ning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.468-468
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been considered as one of the promising candidate for next-generation field emitters because of their unique properties, such as high field enhancement factor, good mechanical strength, and excellent chemical stability. So far, a lot of researchers have been interested in field emission properties of CNT itself. However, it is necessary to study proper field emitter shapes, as well as the fundamental properties of CNTs, to apply CNTs to real devices. For example, specific applications, such as x-ray sources, e-beam sources, and microwave amplifiers, need to get a focused electron beam from the field emitters. If we use planar-typed CNT emitters, it will need several focal lenses to reduce a size of electron beam. On the other hand, the point-typed CNT emitters can be an effective way to get a focused electron beam using a simple technique. Here, we introduce a fabrication of CNT fibers with nanoscale point tips which can be used as a point-typed emitter. The emitter made by the CNT fibers showed very low turn-on electric field, high current density, and large enhancement factor. In addition, it showed stable emission current during long operation period. The high performance of CNT point emitter indicated the potential e-beam source candidate for the applications requiring small electron beam size.

  • PDF

A Study on Rolling Friction Characteristics of Magneto-Rheological Elastomer under Magnetic Fields (자기장 영향에 따른 자기유변탄성체의 구름 마찰 특성 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Kim, Cheol-Hyun;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.234-239
    • /
    • 2014
  • Magneto-rheological elastomer (MR elastomer) is a smart material, because it has mechanical properties that change under a magnetic field. An MR elastomer changes its stiffness characteristics when the inner particles (iron particles) align along the direction of a magnetic field. There has been much research to make use of this characteristic to control vibration issues in various mechanical systems, such as for mounting systems in the automotive field, home appliances, etc. Furthermore, the friction and wear properties of MR elastomer have been studied, as these relate to the durability of the material needed to meet engineering requirements. Rolling friction (or rolling resistance) is one of these friction properties, but has not yet been studied in the context of MR elastomers. In this study, an MR elastomer is fabricated in the shape of a hollow cylinder to evaluate the rolling friction characteristic under a magnetic field. The test apparatus is setup and a strain gauge is used to calculate the rolling resistance under test conditions. Permanent magnets are used to supply the magnetic field during tests. The load and rolling speed conditions are also considered for the tests. The test results show that rolling friction characteristic has a different trend under different magnetic field, load, and rolling speed conditions. It is assumed that the stiffness change of an MR elastomer under a magnetic field has an effect on the rolling friction characteristic of the MR elastomer. For the future work, the rolling friction characteristics of MR elastomers will be controlled by adjusting the strength of the magnetic field using electromagnets.