DOI QR코드

DOI QR Code

Enhanced Field Emission Behavior from Boron-Doped Double-walled Carbon Nanotubes Synthesized by Catalytic Chemical Vapor Deposition

  • Kang, J.H. (Department of Nano and Electronic Physics, Kookmin University) ;
  • Jang, H.C. (Department of Nano Science & Technology, University of Seoul) ;
  • Choi, J.M. (Department of Nano Science & Technology, University of Seoul) ;
  • Lyu, S.C. (Department of Nano Science & Technology, University of Seoul) ;
  • Sok, J.H. (Department of Nano Science & Technology, University of Seoul)
  • Received : 2012.01.16
  • Accepted : 2012.01.26
  • Published : 2012.03.31

Abstract

Attempts to dope carbon nanotube (CNT) with impurities in order to control the electronic properties of the CNT is a natural course of action. Boron is known to improve both the structural and electronic properties. In this report, we study the field emission properties of Boron-doped double-walled CNT (DWCNT). Boron-doped DWCNT films were fabricated by catalytic decomposition of tetrahydrofuran and triisopropyl borate over a Fe-Mo/MgO catalyst at $900^{\circ}C$. We measured the field emission current by varying the doping amount of Boron from 0.8 to 1.8 wt%. As the amount of doped boron in the DWCNT increases, the turn-on-field of the DWCNT decreases drastically from 6 V/${\mu}m$ to 2 V/${\mu}m$. The current density of undoped CNT is 0.6 mA/$cm^2$ at 9 V, but a doped-DWCNT sample with 1.8 wt% achieved the same current density only at only 3.8 V. This shows that boron doped DWCNTs are potentially useful in low voltage operative field emitting device such as large area flat panel displays.

Keywords

References

  1. W. A. Heer, A. Chatelain, and D. Ugarte, Science 270, 5379 (1995).
  2. X. Wang, X. Li, L. Zhaning, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, Science 324, 5928 (2009).
  3. R. Saito, M. Fujia, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 220419 (1992).
  4. N. Hamada, S. Sawda, and A. Oshiyama, Appl. Phys. Lett. 68, 1579 (1992). https://doi.org/10.1103/PhysRevLett.68.1579
  5. M. Endo, T. Hayashi, S. H. Hong, T. Enoki, and M. S. Dresselhaus, J. Appl. Phys. 90, 5670 (2001). https://doi.org/10.1063/1.1409581
  6. L. R. Radovic, M. Karra, K. Skokova, and P. A. Thrower, Carbon 36, 1841 (1998). https://doi.org/10.1016/S0008-6223(98)00156-0
  7. K. Liu, P. Avouris, R. Martel, and W. K. Hsu, Phys. Rev. B. 63, 1611404 (2001).
  8. K. Y. Chun, H. S. Lee, and C. J. Lee, Carbon 47, 169 (2009). https://doi.org/10.1016/j.carbon.2008.09.047
  9. C. J. Lee, S. C. Lyu, H. W. Kim, J. H. Lee, and K. I. Cho, Chem. Phys. Lett. 359, 115 (2002). https://doi.org/10.1016/S0009-2614(02)00655-3
  10. J. W. Jang, C. E. Lee, S. C. Lyu, and T. J. Lee, Appl. Phys. Lett. 84(15), 2877 (2004). https://doi.org/10.1063/1.1697624
  11. Ph. Redlich, J. Loeffler, P. M. Ajayan, J. Bill, F. Aldinger, and M. Ruhle, Chem. Phys. Lett. 260, 465 (1996). https://doi.org/10.1016/0009-2614(96)00817-2
  12. K. McGuire, N. Gohard, P. L. Gai, M. S. Dresselhaus, G. Sumanasekera, and A. M. Rao, Carbon 43, 219 (2005). https://doi.org/10.1016/j.carbon.2004.11.001
  13. C. F. Chen. C. L. Tsai, and C. L. Lin, Diam. Relat. Mater. 12, 1500 (2003). https://doi.org/10.1016/S0925-9635(03)00181-X
  14. Paola Ayala, W. Plank, A. Gruneis, E. I. Kauppinen, M. H. Rummeli, H. Kuzmany, and T. Pichler, J. Mater. Chem. 18, 5676 (2008). https://doi.org/10.1039/b809050e
  15. X. Blase, J.-C. Charlier, A. D. Vita, and R. Car, Phys. Rev. Lett. 83, 5078 (1999). https://doi.org/10.1103/PhysRevLett.83.5078
  16. A. Agarwal, H. Yinnon, D. R. Uhlmann, R. T. Pepper, and C. R. Desper, J. Mater. Sci. 21, 3455 (1986). https://doi.org/10.1007/BF02402987
  17. S. C. Lyu, J. H. Han, K. W. Shin, and J. H. Sok, Carbon 49, 1532 (2011). https://doi.org/10.1016/j.carbon.2010.12.012
  18. R. B. Rakhi, X. Lim, X. Gao, Y, Yang, A. T. S. Wee, K. Sethupathi, S. Ramaprabhu, and C. H. Sow, Appl. Phys. A 98, 195 (2010). https://doi.org/10.1007/s00339-009-5373-1
  19. E. S. Jang, J. C. Goak, H. S. Lee, J. H. Han, C. S. Lee, J. H. Sok, Y. H. Seo, K. S. Park, and N. S. Lee, Appl. Surf. Sci. 256, 6838 (2010). https://doi.org/10.1016/j.apsusc.2010.04.098
  20. SeungChul Lyu, Dami Jung, KiTae Ahn, Hansung Lee, Naesung Lee, Yunsun Park, and Junghyun Sok, Kor. J. Met. Mater. 48, 355 (2009).
  21. B. Bittova, J. Poltiverova Vejpravova, M. Kalbac, S. Burianova, A. Mantlikova, S. Danis, and S. Doyle, J. Phys. Chem. C 115, 17303 (2011). https://doi.org/10.1021/jp203365g
  22. Yuji Fujiwara, Hitoshi Takegawa, Hideki Sato, Kohji Maeda, Yahachi Saito, Tadashi Kobayashi, and Shigeru Shiomi. J. Appl. Phys. 95, 7119 (2004).
  23. KiTae Ahn, HyunChul Jang, SeungChul Lyu, Hansung Lee, Naesung Lee, Moonsup Han, Yunsun Park, Wanshick Hong, Kyoungwan Park, and Junghyun Sok, Kor. J. Met. Mater. 49, 79 (2010). https://doi.org/10.3365/KJMM.2011.49.1.079
  24. R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A. 119, 173 (2005).
  25. J.-C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N. L. Rupensinghe, W. K. Hsu, N. Gerbert, H. Terrones, and G. A. J. Amaratunga, Nano Letters 2, 1191 (2002). https://doi.org/10.1021/nl0256457
  26. Hyo-Shin Ahn, Kwang-Ryeol Lee, Doh-Yeon Kim, and Sengwu Han, Appl. Phys. Lett. 88, 093122 (2006). https://doi.org/10.1063/1.2180444