Browse > Article
http://dx.doi.org/10.4283/JMAG.2012.17.1.009

Enhanced Field Emission Behavior from Boron-Doped Double-walled Carbon Nanotubes Synthesized by Catalytic Chemical Vapor Deposition  

Kang, J.H. (Department of Nano and Electronic Physics, Kookmin University)
Jang, H.C. (Department of Nano Science & Technology, University of Seoul)
Choi, J.M. (Department of Nano Science & Technology, University of Seoul)
Lyu, S.C. (Department of Nano Science & Technology, University of Seoul)
Sok, J.H. (Department of Nano Science & Technology, University of Seoul)
Publication Information
Abstract
Attempts to dope carbon nanotube (CNT) with impurities in order to control the electronic properties of the CNT is a natural course of action. Boron is known to improve both the structural and electronic properties. In this report, we study the field emission properties of Boron-doped double-walled CNT (DWCNT). Boron-doped DWCNT films were fabricated by catalytic decomposition of tetrahydrofuran and triisopropyl borate over a Fe-Mo/MgO catalyst at $900^{\circ}C$. We measured the field emission current by varying the doping amount of Boron from 0.8 to 1.8 wt%. As the amount of doped boron in the DWCNT increases, the turn-on-field of the DWCNT decreases drastically from 6 V/${\mu}m$ to 2 V/${\mu}m$. The current density of undoped CNT is 0.6 mA/$cm^2$ at 9 V, but a doped-DWCNT sample with 1.8 wt% achieved the same current density only at only 3.8 V. This shows that boron doped DWCNTs are potentially useful in low voltage operative field emitting device such as large area flat panel displays.
Keywords
DWCNT; field emission; current density; boron doping;
Citations & Related Records
 (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 W. A. Heer, A. Chatelain, and D. Ugarte, Science 270, 5379 (1995).
2 X. Wang, X. Li, L. Zhaning, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, Science 324, 5928 (2009).
3 R. Saito, M. Fujia, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 220419 (1992).
4 N. Hamada, S. Sawda, and A. Oshiyama, Appl. Phys. Lett. 68, 1579 (1992).   DOI   ScienceOn
5 M. Endo, T. Hayashi, S. H. Hong, T. Enoki, and M. S. Dresselhaus, J. Appl. Phys. 90, 5670 (2001).   DOI   ScienceOn
6 L. R. Radovic, M. Karra, K. Skokova, and P. A. Thrower, Carbon 36, 1841 (1998).   DOI   ScienceOn
7 Hyo-Shin Ahn, Kwang-Ryeol Lee, Doh-Yeon Kim, and Sengwu Han, Appl. Phys. Lett. 88, 093122 (2006).   DOI   ScienceOn
8 K. McGuire, N. Gohard, P. L. Gai, M. S. Dresselhaus, G. Sumanasekera, and A. M. Rao, Carbon 43, 219 (2005).   DOI   ScienceOn
9 J. W. Jang, C. E. Lee, S. C. Lyu, and T. J. Lee, Appl. Phys. Lett. 84(15), 2877 (2004).   DOI   ScienceOn
10 Ph. Redlich, J. Loeffler, P. M. Ajayan, J. Bill, F. Aldinger, and M. Ruhle, Chem. Phys. Lett. 260, 465 (1996).   DOI   ScienceOn
11 C. F. Chen. C. L. Tsai, and C. L. Lin, Diam. Relat. Mater. 12, 1500 (2003).   DOI   ScienceOn
12 Paola Ayala, W. Plank, A. Gruneis, E. I. Kauppinen, M. H. Rummeli, H. Kuzmany, and T. Pichler, J. Mater. Chem. 18, 5676 (2008).   DOI   ScienceOn
13 X. Blase, J.-C. Charlier, A. D. Vita, and R. Car, Phys. Rev. Lett. 83, 5078 (1999).   DOI   ScienceOn
14 A. Agarwal, H. Yinnon, D. R. Uhlmann, R. T. Pepper, and C. R. Desper, J. Mater. Sci. 21, 3455 (1986).   DOI
15 S. C. Lyu, J. H. Han, K. W. Shin, and J. H. Sok, Carbon 49, 1532 (2011).   DOI   ScienceOn
16 R. B. Rakhi, X. Lim, X. Gao, Y, Yang, A. T. S. Wee, K. Sethupathi, S. Ramaprabhu, and C. H. Sow, Appl. Phys. A 98, 195 (2010).   DOI
17 E. S. Jang, J. C. Goak, H. S. Lee, J. H. Han, C. S. Lee, J. H. Sok, Y. H. Seo, K. S. Park, and N. S. Lee, Appl. Surf. Sci. 256, 6838 (2010).   DOI   ScienceOn
18 SeungChul Lyu, Dami Jung, KiTae Ahn, Hansung Lee, Naesung Lee, Yunsun Park, and Junghyun Sok, Kor. J. Met. Mater. 48, 355 (2009).
19 B. Bittova, J. Poltiverova Vejpravova, M. Kalbac, S. Burianova, A. Mantlikova, S. Danis, and S. Doyle, J. Phys. Chem. C 115, 17303 (2011).   DOI   ScienceOn
20 Yuji Fujiwara, Hitoshi Takegawa, Hideki Sato, Kohji Maeda, Yahachi Saito, Tadashi Kobayashi, and Shigeru Shiomi. J. Appl. Phys. 95, 7119 (2004).
21 KiTae Ahn, HyunChul Jang, SeungChul Lyu, Hansung Lee, Naesung Lee, Moonsup Han, Yunsun Park, Wanshick Hong, Kyoungwan Park, and Junghyun Sok, Kor. J. Met. Mater. 49, 79 (2010).   DOI
22 R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A. 119, 173 (2005).
23 J.-C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N. L. Rupensinghe, W. K. Hsu, N. Gerbert, H. Terrones, and G. A. J. Amaratunga, Nano Letters 2, 1191 (2002).   DOI   ScienceOn
24 K. Liu, P. Avouris, R. Martel, and W. K. Hsu, Phys. Rev. B. 63, 1611404 (2001).
25 K. Y. Chun, H. S. Lee, and C. J. Lee, Carbon 47, 169 (2009).   DOI   ScienceOn
26 C. J. Lee, S. C. Lyu, H. W. Kim, J. H. Lee, and K. I. Cho, Chem. Phys. Lett. 359, 115 (2002).   DOI   ScienceOn