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Abstract: This study investigated the use of airborne image 
data to provide estimates of within -field variability in soil 
properties and crop growth as an alternative to extensive field 
data collection. Hyperspectral and multispectral images  were 
acquired in 2000, 2001, and 2002 for central Missouri 
experimental fields. Data were converted to reflectance using 
chemically-treated reference tarps with known reflectance 
levels. Geometric distortion of the hyperspectral pushbroom 
sensor images was corrected with a rubber sheeting 
transformation. Statistical analyses were used to relate image 
data to field-measured soil properties and crop characteristics. 
Results showed that this approach has potential; however, it is 
important to address a number of implementation issues to 
insure quality data and accurate interpretations. 
Keywords: Airborne, Hyperspectral, Precision agriculture, 
Soil, LAI, Yield 
 
 

1. Introduction 
 

Precision agriculture, also known as site-specific crop 
management, is an information-based management-
intensive approach to farming. Instead of managing a 
field as a whole, the philosophy of precision agriculture 
is to manage individual areas within a field, taking into 
account spatial variability in soil, landscape, and other 
factors affecting crop production. By accounting for 
within -field variability and applying inputs such as 
fertilizers and pesticides accordingly, precision 
agriculture has the potential to provide maximum return 
and reduce environmental loadings from agricultural 
chemicals . 

Widespread implementation of precision agriculture 
will require methods that efficiently and economically 
characterize variations in soil properties, crop growth, 
and other factors affecting crop yields. An efficient way 
to detect spatial differences in crop and soil conditions 
within a field is through image-based remote sensing 
(RS) [1]. A variety of aircraft- and satellite-based RS 
data sources, such as photographs, videographs, and 
multispectral and hyperspectral images, have become 
available for use in agricultural applications. Application 
of these remote sensing images is complicated because 
image acquisition requires cloud-free sky conditions, the 
signal is attenuated by the atmosphere, and image 
interpretation is a complex function of the sun/ sensor/ 
target geometry [2]. 

The objective of this study was to investigate the 
ability of airborne hyperspectral- and multispectral- 
image data to estimate within-field variability in soil 
properties and crop growth.  

2. Data Collection, Processing, and Analysis 
 
1) Study Site and Ground Data Collection 
 

Data were collected on two research fields (Field 1, 35 
ha and Field 2, 13 ha), managed in a corn -soybean 
rotation and located near Centralia, Missouri, USA (-
92.12 E, 39.97 N). Soils are claypan soils of the Mexico 
series (fine, smectitic, mesic aeric Vertic Epiaqualfs) and 
the Adco series (fine, smectitic, mesic aeric Vertic 
Albaqualfs). Surface textures range from a silt loam to a 
silty clay loam. The subsoil “claypan” horizon(s) are 
silty clay loam, silty clay or clay, and commonly contain 
as much as 50 to 60% smectitic clay.  

Ground measurements used in the soil property 
analysis included soil chemical properties, texture, and 
apparent electrical conductivity (ECa). The field was 
soil-sampled on a 30-m grid to a 15-cm depth in the 
spring of 2001. Samples were analyzed for P (Bray 1 
extractable), K, Ca, Mg (ammonium acetate extractable), 
cation exchange capacity (CEC; sum of bases), organic 
matter (OM; wet oxidation), and pH (salt), using 
standard University of Missouri procedures [3]. Soil ECa , 
which has been shown to be strongly related to soil 
texture on these fields [4], was measured in the fall of 
1999 using two commercial sensor systems, the Geonics 
EM38∗  and the Veris 3100. 

Seven monitoring sites in Field 1 and five in Field 2 
were selected to represent the range of variability present 
in the fields for LAI and crop yield. Destructive crop 
sampling for LAI was carried out within a 1-m long row 
section for corn and soybean. Leaf area was measured 
with a LI -COR leaf area meter (LI -3100), in which the 
projected image of a leaf sample traveling under a 
fluorescent light source is reflected by a system of 
mirrors to a solid-state scanning camera. Non-destructive 
LAI measurement was performed with a plant canopy 
analyzer (PCA, LAI-2000, LI -COR Inc.), which 
estimated LAI from light measurements above and 
below the canopies at five solid angles using a 
hemispherical cosine-corrected sensor. Crop yield was 
obtained both by hand harvesting and with a yield 
monitor-equipped combine. 
 

                                                 
∗ Mention of trade names or commercial products is solely 

for the purpose of providing specific information and does not 
imply recommendation or endorsement by USDA or RDA.  



2) Bare Soil Image Processing and Analysis  
 

Airborne images were taken under bare soil conditions 
prior to crop planting and/or emergence in the spring of  
2000, 2001, 2002. The aerial hyperspectral (HS) 
imaging system used in this study was the Real Time 
Digital Airborne Camera System H3 (RDACSH3) 
pushbroom prism-grating scanner operated by Spectral 
Visions Midwest [5]. RDACSH3 images included 120 
bands ranging from 471-828 nm on a 3-nm interval. As 
operated, the system provided a spatial resolution of 1 m 
and a spectral resolution of 1.5 nm full width at half 
maximum (FWHM).  

Significant geometric distortion was observed in the 
HS images, probably due to variations in velocity and 
attitude of the aircraft caused by air turbulence. 
Compensation for this distortion was implemented in 
several ways. The image provider used a gyro-stabilized 
camera mount with an error of +/ -5 degrees. Distortions 
caused by the roll of the aircraft were  pre -processed by 
finding a feature that should be straight, like a road in the 
direction of flight, and drawing a line to delineate that 
feature in the raw image. Software was then used to shift 
image pixels left or right to make the feature straight. 
After this systematic correction from the vendor, the 
images still needed to be geo-referenced for comparing 
with measured ground data. To do this, we applied a 
rubber sheeting model using piecewise polynomials for 
image rectification. 

Data from the airborne imaging spectrometer was 
expressed as a solar irradiance curve in uncalibrated 
digital numbers (DN). We used empirical line correction 
methods to obtain an apparent reflectance factor (ña) 
using chemically-treated reference tarps to minimize 
effects of sensor and solar variation. This approach has 
the advantages of full compensation for atmospheric 
effects and no need for ground operations other than pre-
flight tarp deployment. Details of this procedure have 
been reported elsewhere [1]. 

To compare the usefulness of the HS data to 
multispectral data, we averaged reflectance values of the 
HS data spectrally to make Landsat-like bands (LLBs). 
Another data reduction method, principal component 
analysis (PCA), was also applied to the 120 HS data 
layers. The first five principal components (PCs) of each 
image were used for data analysis because these five PCs 
represented 98 % or more of the variance in the image 
data. In addition, only these first five PCs showed a 
spatial structure similar to known field patterns 
providing an indication that additional PCs consisted 
primarily of measurement noise. Three data sets, the first 
consisting of the 120 HS data layers, the second 
consisting of 4 Landsat-like data layers, and the third 
consisting of 5 PC data layers, were used for analysis.  

A variety of statistical analyses, from simple to more 
complex, were used to examine the relationship of the 
HS and Landsat-like reflectance data to soil texture, 
chemical properties, and ECa. First, Pearson correlation 
coefficients (r) were calculated for each combination of 
reflectance and soil variables. Second, stepwise multiple 
linear regression (SMLR) analysis was used to identify a 
set of statistically significant wavelengths that could be 
used to explain soil properties as a function of HS 
reflectance for each of the three years. Third, multiple 
regression (MR) models were used to estimate soil 
properties from the 4 LLBs and from the 5 PCs.   
 
3) Crop Image Processing and Analysis 
 

Airborne HS and satellite multispectral (MS) images 
were obtained several times for Fields 1 and 2 during the 
2001 and 2002 cropping seasons. HS data were obtained 
using the RDACSH3 system described above and the 

Airborne Imaging Spectroradiometer for Applications 
(AISA) [6] system operated by CALMIT (Center for 
Advanced Land Management Information Technologies), 
University of Nebraska, USA. Spectral coverage of the 
AISA sensor was from 450 nm to 900 nm, while the 
spatial resolution (1.5~4 m) and number of spectral 
bands (25~70) were selectable according to the 
requirements of the particular study. For this research,  
the AISA system was configured to provide 24 bands 
ranging from 467 nm to 891 nm and a 1.5-m spatial 
resolution. Geometric and radiometric corrections for the 
airborne sensor data used the same procedures reported 
above for bare soil images. 

Multispectral satellite images used in this study were 
obtained from the IKONOS and Quickbird satellites and 
had a 4-m spatial resolution. As provided by the vendor, 
the satellite images were georectified and had been  
radiometrically corrected to adjust brightness and 
contrast to compensate for sensor sensitivity changes. No 
further geometric or radiometric calibration was done 
after we received the images.  

Normalized Difference Vegetation Index (NDVI; 
(NIR-RED)/(NIR+RED)) was calculated from the 
images at points  coincident with the hand-harvested 
areas. Images used for LAI estimation were obtained 
with the multiple sensors described above, resulting in 
data with different levels of radiometric calibration and  
spatial resolution, as well as, and different amounts of 
atmosphere between the sensor and the ground. 
Correlation and regression analyses were used to 
investigate the relationships of LAI and yield to NDVI. 
 

3. Results 

1) Soil Properties 
 

In general, soil chemical properties were negatively 
correlated with reflectance (Fig. 1) over the RDACSH3 
measurement range (471 to 828 nm). Blue wavelengths 
were most strongly related to ground-measured soil 
properties, including chemical properties (Fig. 1), clay 
content, and soil ECa. PC 4 and PC 1 from the 2000 and 
2002 bare soil images (dry soils) were highly correlated 
to soil chemical properties and ECa, respectively. Bare 
soil images obtained in dry conditions (2000 and 2002) 
were better for estimating soil chemical properties and 
ECa. The moist soil (2001) image was better for 
estimating soil texture. 

SMLR models using HS data exhibited higher R2 
values than MR models using LLBs demonstrating the 
value of HS images. However, results with Landsat-like 
images were still quite good, and may be more 
acceptable for practical application, considering data 
volume, efficiency and overfitting concerns. Both data 
reduction approaches - creating LLBs and application of 
PCA - reduced the volume of data while maintaining the 
ability to develop relationships with soil properties. Soil  
ECa, particularly the shallow measurement from the 
Veris 3100, provided a dense dataset related to soil 
texture that could then be related to HS data, providing a 
two-stage calibration of texture to bare soil images. 
 

2) LAI and Yield 
 

NDVI showed a strong variation over the growing 
season, as did LAI. Curvilinear relationships between 
NDVI and leaf area index (Fig. 2) were found for data 
obtained throughout the growing season at monitoring 
sites within a corn field (Field 2, 2002). The large 
increase in NDVI between DOY 176 and 179 (Fig. 2) 
might be due to either calibration differences between 



the different sensors used or rapid growth of the corn  
(corn was at the V18 growth stage, one week away from 
the reproductive phase). NDVI measured at crop 
development stage R4 was better for estimating LAI than 
was NDVI at R6. However, NDVI at R6 was better for 
estimating soybean yield than NDVI at R4 (Table 1).  
 

5. Conclusions 
 

Soil reflectance is affected by a number of interrelated 
soil properties. Soil color as related to chemical 
composition (e.g., organic matter and oxides), moisture, 
and texture are widely recognized as important soil 
properties that change the spectral reflectance of the 
surface soil. In this study and related work [1], we have 
found all of these soil parameters to be related to data 
obtained from airborne HS images. 

NDVI, an image-derived vegetation index, was 
compared with measured LAI and yield data for both 
corn and soybean. Over the growing season, the general 
trend in NDVI was similar to that in LAI. NDVI 
measured at development stages R4 and R6 could be 
used to estimate LAI and yield in soybean. 

In general, statistical models using HS data exhibited 
higher R2 values than those using MS data. However, 
results with MS data were still quite good, and may be 
more acceptable for practical application, considering 
costs, data volume and processing efficiency, and 
potential overfitting concerns associated with HS images. 
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Figure 1. Correlations of 120 hyperspectal wavelengths and  
         four Landsat-like bands (LLBs, larger symbols) to  
         chemical properties.  
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Figure 2. Relationship between LAI and NDVI 
         for corn over several dates in 2002 

Table 1. Estimation of LAI and yield from NDVI at different 
        soybean development stages. 
 

Development 
stage 

 Slope Intercept R2 

LAI 7.19 -2.10 0.68 R4 
(full pod) Yield 2289.9 454.8 0.48 

LAI 14.31 -5.57 0.54 R6 
(full seed) Yield 5599.1 -1565.5 0.69 
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