• Title/Summary/Keyword: Field Programmable Gate Array

Search Result 377, Processing Time 0.025 seconds

A Transactor Implementation for SoC Verification with iPROVE (iPROVE 기반 SoC 검증을 위한 트랜잭터 구현)

  • Cho, Chong-Hyun;Cho, Joong-Hwee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.73-79
    • /
    • 2007
  • In this paper the proposed transactor is customized and a generator which roles of automatically generating the transactor according to DUT(Design Under Test)'s input and output is implemented. The customized transactor is designed by rearranging the signals of depending on DUT and transactor protocol which consists of signals of the PCI interface between host computer and FPGA(Field Programmable Gate Array). The implemented automatic generator of transactor generates a Verilog code of transactor by adding DUT's information about input and output ports. Performance and normal working of the generated transactor has been verified by experiments with some verified hardware IPs. Also, an efficiency of the transactor has been verified by comparing with user's manually designed transactor and generated transactor. Moreover, the generator's flexibility has been verified for DUT's information of variable input and output. In case of using the implemented generator, a design time of transactor is reduced.

Development of FPGA-based Meteorological Information Data Receiver Circuit for Low-Cost Meteorological Information Receiver System for COMS (보급형 천리안 위성 기상정보 수신시스템을 위한 FPGA 기반 기상정보 데이터 수신회로 개발)

  • Ryu, Sang-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2373-2379
    • /
    • 2015
  • COMS(Communication, Ocean and Meteorological Satellite), the first Korean geostationary meteorological satellite, provides free meteorological information through HRIT/LRIT(High/Low Rate Information Transmission) service. This work presents the development of data receiver circuit that is essential to the implementation of a low-cost meteorological information receiver system. The data receiver circuit processes the data units according to the specification of physical layer and data link layer of HRIT/LRIT service. For this purpose, the circuit consists of a Viterbi decoder, a sync. word detector, a derandomizer, a Reed-Solomon decoder and so on. The circuit also supports PCI express interface to pass the information data on to the host PC. The circuit was implemented on an FPGA(field programmable gate array) and its function was verified through simulations and hardware implementation.

A Study on Frequency Hopping Signal Detection Using a Polyphase DFT Filterbank (다상 DFT 필터뱅크를 이용한 도약신호 검출에 관한 연구)

  • Kwon, Jeong-A;Lee, Cho-Ho;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.789-796
    • /
    • 2013
  • It is known that the detection of hopping signals without any information about hopping duration and hopping frequency is rather difficult. This paper considers the blind detection of hopping signal's information such as hopping duration and hopping frequency from the sampled wideband signals. In order to find hopping information from the wideband signals, multiple narrow-band filters are required in general, which leads to huge implementation complexity. Instead, this paper employs the polyphase DFT(discrete Fourier transform) filterbank to reduce the implementation complexity. This paper propose hopping signal detection algorithm from the polyphase DFT filterbank output. Specifically, based on the binary image processing, the proposed algorithm is developed to decrease the memory size and H/W complexity. The performance of the proposed algorithm is evaluated through the computer simulation and FPGA (field programmable gate array) implementation.

Design and Implementation of Robot-Based Alarm System of Emergency Situation Due to Falling of The Eldely (고령자 낙상에 의한 응급 상황의 4족 로봇 기반 알리미 시스템 설계 및 구현)

  • Park, ChulHo;Lim, DongHa;Kim, Nam Ho;Yu, YunSeop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.781-788
    • /
    • 2013
  • In this paper, we introduce a quadruped robot-based alarm system for monitoring the emergency situation due to falling in the elderly. Quadruped robot includes the FPGA Board(Field Programmable Gate Array) applying a red-color tracking algorithm. To detect a falling of the elderly, a sensor node is worn on chest and accelerations and angular velocities measured by the sensor node are transferred to quadruped robot, and then the emergency signal is transmitted to manager if a fall is detected. Manager controls the robot and then he judges the situation by monitoring the real-time images transmitted from the robot. If emergency situation is decided by the manager, he calls 119. When the fall detection system using only sensor nodes is used, sensitivity of 100% and specificity of 98.98% were measured. Using the combination of the fall detection system and portable camera (robot), the emergency situation was detected to 100 %.

An FPGA Implementation of Parallel Hardware Architecture for the Real-time Window-based Image Processing (실시간 윈도우 기반 영상 처리를 위한 병렬 하드웨어 구조의 FPGA 구현)

  • Jin S.H.;Cho J.U.;Kwon K.H.;Jeon J.W.
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.223-230
    • /
    • 2006
  • A window-based image processing is an elementary part of image processing area. Because window-based image processing is computationally intensive and data intensive, it is hard to perform ail of the operations of a window-based image processing in real-time by using a software program on general-purpose computers. This paper proposes a parallel hardware architecture that can perform a window-based image processing in real-time using FPGA(Field Programmable Gate Array). A dynamic threshold circuit and a local histogram equalization circuit of the proposed architecture are designed using VHDL(VHSIC Hardware Description Language) and implemented with an FPGA. The performances of both implementations are measured.

A Design and Implementation of the Real-Time MPEG-1 Audio Encoder (실시간 MPEG-1 오디오 인코더의 설계 및 구현)

  • 전기용;이동호;조성호
    • Journal of Broadcast Engineering
    • /
    • v.2 no.1
    • /
    • pp.8-15
    • /
    • 1997
  • In this paper, a real-time operating Motion Picture Experts Group-1 (MPEG-1) audio encoder system is implemented using a TMS320C31 Digital Signal Processor (DSP) chip. The basic operation of the MPEG-1 audio encoder algorithm based on audio layer-2 and psychoacoustic model-1 is first verified by C-language. It is then realized using the Texas Instruments (Tl) assembly in order to reduce the overall execution time. Finally, the actual BSP circuit board for the encoder system is designed and implemented. In the system, the side-modules such as the analog-to-digital converter (ADC) control, the input/output (I/O) control, the bit-stream transmission from the DSP board to the PC and so on, are utilized with a field programmable gate array (FPGA) using very high speed hardware description language (VHDL) codes. The complete encoder system is able to process the stereo audio signal in real-time at the sampling frequency 48 kHz, and produces the encoded bit-stream with the bit-rate 192 kbps. The real-time operation capability of the encoder system and the good quality of the decoded sound are also confirmed using various types of actual stereo audio signals.

  • PDF

FGPA Design and SoC Implementation for Wireless PAN Applications (무선 PAN 응용을 위한 FPGA 설계 및 SoC)

  • Kim, Young-Sung;Kim, Sun-Hee;Hong, Dae-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.462-469
    • /
    • 2008
  • In this paper, we design the FPGA (Field-Programmable Gate Array) of the KOINONIA WPAN (Wireless Personal Area Network), and implement the SoC (System on Chip). We use the redundant bits to make a constant-amplitude in a modulator part. Additionally, the SNR (Signal to Noise Ratio) performance of the demodulator is improved by using the redundant bits in decoding steps. The four-million FPGA of the KOINONIA WPAN can be operated at 44MHz frequency. The PER (Packet Error Rate) of the designed FPGA with RF (Radio Frequency) module is below 1% at the -86dB MIPLS (Minimum Input Power Level Sensitivity), and the SNR is about 13dB. The SoC is implemented by using Hynix 0.25um CMOS (Complementary Metal Oxide Semiconductor) process. The size of the SoC is $6.52mm{\times}6.92mm$.

Development of portable single-beam acoustic tweezers for biomedical applications (생체응용을 위한 휴대용 단일빔 음향집게시스템 개발)

  • Lee, Junsu;Park, Yeon-Seong;Kim, Mi-Ji;Yoon, Changhan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.435-440
    • /
    • 2020
  • Single-beam acoustic tweezers that are capable of manipulating micron-size particles in a non-contact manner have been used in many biological and biomedical applications. Current single-beam acoustic tweezer systems developed for in vitro experiments consist of a function generator and a power amplifier, thus the system is bulky and expensive. This configuration would not be suitable for in vivo and clinical applications. Thus, in this paper, we present a portable single-beam acoustic tweezer system and its performances of trapping and manipulating micron-size objects. The developed system consists of an Field Programmable Gate Array (FPGA) chip and two pulsers, and parameters such as center frequency and pulse duration were controlled by a Personal Computer (PC) via a USB (Universal Serial Bus) interface in real-time. It was shown that the system was capable of generating the transmitting pulse up to 20 MHz, and producing sufficient intensity to trap microparticles and cells. The performance of the system was evaluated by trapping and manipulating 40 ㎛ and 90 ㎛ in diameter polystyrene particles.

A Hardware Implementation of Pyramidal KLT Feature Tracker (계층적 KLT 특징 추적기의 하드웨어 구현)

  • Kim, Hyun-Jin;Kim, Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.57-64
    • /
    • 2009
  • This paper presents the hardware implementation of the pyramidal KLT(Kanade-Lucas-Tomasi) feature tracker. Because of its high computational complexity, it is not easy to implement a real-time KLT feature tracker using general-purpose processors. A hardware implementation of the pyramidal KLT feature tracker using FPGA(Field Programmable Gate Array) is described in this paper with emphasis on 1) adaptive adjustment of threshold in feature extraction under diverse lighting conditions, and 2) modification of the tracking algorithm to accomodate parallel processing and to overcome memory constraints such as capacity and bandwidth limitation. The effectiveness of the implementation was evaluated over ones produced by its software implementation. The throughput of the FPGA-based tracker was 30 frames/sec for video images with size of $720{\times}480$.

OFDM System for Wireless-PAN related short distance Maritime Data Communication (Wireless PAN기반의 근거리 해상통신용 OFDM 송수신회로에 관한 연구)

  • Cho, Seung-Il;Cha, Jae-Sang;Park, Gye-Kack;Yang, Chung-Mo;Kim, Seong-Kweon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.145-151
    • /
    • 2009
  • Orthogonal Frequency Division Multiplexing (OFDM) has been focused on as 4th generation communication method for realization of Ubiquitous Network in land mobile communications services, and has been a standard technology of Wireless Local Area Network (WLAN) for a High Date Rate communication. And in maritime data communication using high frequency (HF) band, 32-point FFT OFDM system is recommended by International Telecommunication Union (ITU). Maritime communication should be kept on connecting when maritime accident or the maritime disaster happen. Therefore, main device FFT should be operated with low power consumption. In this paper we propose a low power 32-point FFT algorithm using radix-2 and radix-4 for low power operation. The proposed algorithm was designed using VHSIC hardware description language (VHDL), and it was confirmed that the output value of Spartan-3 field-programmable gate array (FPGA) board corresponded to the output value calculated using Matlab. The proposed 32-point FFT algorithm will be useful as a leading technology in a HF maritime data communication.