• 제목/요약/키워드: Field Multiplication

검색결과 250건 처리시간 0.026초

GF($2^m$)상의 승산기 구성에 관한 연구 (A study on the multiplier for finite field GF($2^m$))

  • 원동호;김병찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(II)
    • /
    • pp.845-849
    • /
    • 1987
  • Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and basis conversion algorithms. In this paper, a new multiplication circuit is developed for the finite field GF($2^m$) based on a conventional basis. It is composed of AND gates and EXCLUSIVE-OR gates and is regular, simple, expandable and therefore, naturally suitable for VLSI implementations.

  • PDF

GF($2^m$) 상의 유한체 승산기 설계 및 비교 (A Design and Comparison of Finite Field Multipliers over GF($2^m$))

  • 김재문;이만영
    • 전자공학회논문지B
    • /
    • 제28B권10호
    • /
    • pp.799-806
    • /
    • 1991
  • Utilizing dual basis, normal basis, and subfield representation, three different finite field multipliers are presented in this paper. First, we propose an extended dual basis multiplier based on Berlekamp's bit-serial multiplication algorithm. Second, a detailed explanation and design of the Massey-Omura multiplier based on a normal basis representation is described. Third, the multiplication algorithm over GF(($2^{n}$) utilizing subfield is proposed. Especially, three different multipliers are designed over the finite field GF(($2^{4}$) and the complexity of each multiplier is compared with that of others. As a result of comparison, we recognize that the extendd dual basis multiplier requires the smallest number of gates, whereas the subfield multiplier, due to its regularity, simplicity, and modularlity, is easier to implement than the others with respect to higher($m{\ge}8$) order and m/2 subfield order.

  • PDF

233-비트 이진체 타원곡선을 지원하는 암호 프로세서의 저면적 구현 (A small-area implementation of cryptographic processor for 233-bit elliptic curves over binary field)

  • 박병관;신경욱
    • 한국정보통신학회논문지
    • /
    • 제21권7호
    • /
    • pp.1267-1275
    • /
    • 2017
  • NIST 표준에 정의된 이진체(binary field) 상의 233-비트 타원곡선을 지원하는 타원곡선 암호(elliptic curve cryptography; ECC) 프로세서를 설계하였다. 타원곡선 암호 시스템의 핵심 연산인 스칼라 점 곱셈을 수정형 Montgomery ladder 알고리듬을 이용하여 구현함으로써 단순 전력분석에 강인하도록 하였다. 점 덧셈과 점 두배 연산은 아핀(affine) 좌표계를 기반으로 유한체 $GF(2^{233})$ 상의 곱셈, 제곱, 나눗셈으로 구현하였으며, shift-and-add 방식의 곱셈기와 확장 유클리드 알고리듬을 이용한 나눗셈기를 적용함으로써 저면적으로 구현하였다. 설계된 ECC 프로세서를 Virtex5 FPGA로 구현하여 정상 동작함을 확인하였다. $0.18{\mu}m$ 공정의 CMOS 셀 라이브러리로 합성한 결과 49,271 GE로 구현되었고, 최대 345 MHz의 동작 주파수를 갖는다. 스칼라 점 곱셈에 490,699 클록 사이클이 소요되며, 최대 동작 주파수에서 1.4 msec의 시간이 소요된다.

가우시안 정규기저를 이용한 $GF(2^m)$상의 새로운 곱셈 알고리즘 및 VLSI 구조 (A New Multiplication Algorithm and VLSI Architecture Over $GF(2^m)$ Using Gaussian Normal Basis)

  • 권순학;김희철;홍춘표;김창훈
    • 한국통신학회논문지
    • /
    • 제31권12C호
    • /
    • pp.1297-1308
    • /
    • 2006
  • 유한체상의 곱셈은 타원곡선 암호시스템의 구현에 있어 가장 중요한 연산 중 하나이다. 본 논문에서는 가우시안 정규기저를 이용하여, $GF(2^m)$상의 새로운 곱셈 알고리즘 및 VLSI 구조를 제안한다. 제안된 곱셈 알고리즘은 정규기저 원소의 대칭성이용과 계수의 인덱스 변형에 기반하며, 타원곡선 암호 시스템을 위해 NIST(National Institute of Standards and Technology) 및 IEEE 1363에서 권고하는 다섯 가지 $GF(2^m)$, $m\in${163, 233, 283, 409, 571}, 모두에 적용 할 수 있다. 제안된 곱셈알고리즘에 기만한 VLSI 구조는 기존의 $GF(2^m)$상의 정규기저 곱셈기에 비해 속도 혹은 하드웨어 면적에 있어 향상된 성능을 보인다. 또한 본 논문에서는 정규기저 원소의 기본 곱셈 행렬을 쉽게 찾을 수 있는 방법을 제시한다.

공통인수 후처리 방식에 기반한 고속 유한체 곱셈기 (Fast GF(2m) Multiplier Architecture Based on Common Factor Post-Processing Method)

  • 문상국
    • 한국정보통신학회논문지
    • /
    • 제8권6호
    • /
    • pp.1188-1193
    • /
    • 2004
  • 비도 높은 암호용으로 연구된 유한체 곱셈 연산기는 크게 직렬 유한체 곱셈기, 배열 유한체 곱셈기, 하이브리드 유한체 곱셈기으로 분류되어 왔다. 직렬 유한체 곱셈기는 마스트로비토 (Mastrovito) (1)에 의하여 제안되어 유한체 곱셈기의 가장 기본적인 구조로 자리잡아 왔고, 이를 병렬로 처리하기 위해 m 배의 자원을 투자하여 m 배의 속도를 얻어낸 결과가 2차원 배열 유한체 곱셈기이며 (2), 이들 기존 방식의 장점만을 취하여 제안된 방식이 1999년 Paar에 의해 제안된 하이브리드 (hybrid) 곱셈기이다 (3). 반면 이 하이브리드 곱셈기는 사용 가능한 유한체로서 유한체의 차수를 합성수로 사용해야 한다는 제약이 따른다. 본 논문에서는 마스트로비토의 곱셈기의 구조를 기본으로 하고, 수식적으로 공통인수를 끌어내어 후처리하는 기법을 유도하여 적용한다. 제안한 방식으로 설계한 새로운 유한체 곱셈기는 HDL로 구현하여 소프트웨어 측면 뿐 아니라 하드웨어 측면에서도 그 기능과 성능을 검증하였다. 제안된 방식에서 직렬 다항 기준식 (polynomial)을 t (t는 1보다 큰 양의 정수) 부분으로 나누어 적용하였을 경우 곱셈기는 t 배의 속도 향상을 보일 수 있다.

Efficient Computation of Eta Pairing over Binary Field with Vandermonde Matrix

  • Shirase, Masaaki;Takagi, Tsuyoshi;Choi, Doo-Ho;Han, Dong-Guk;Kim, Ho-Won
    • ETRI Journal
    • /
    • 제31권2호
    • /
    • pp.129-139
    • /
    • 2009
  • This paper provides an efficient algorithm for computing the ${\eta}_T$ pairing on supersingular elliptic curves over fields of characteristic two. In the proposed algorithm, we deploy a modified multiplication in $F_{2^{4n}}$ using the Vandermonde matrix. For F, G ${\in}$ $F_{2^{4n}}$ the proposed multiplication method computes ${\beta}{\cdot}F{\cdot}G$ instead of $F{\cdot}G$ with some ${\beta}$ ${\in}$ $F^*_{2n}$ because ${\beta}$ is eliminated by the final exponentiation of the ${\eta}_T$ pairing computation. The proposed multiplication method asymptotically requires only 7 multiplications in $F_{2^n}$ as n ${\rightarrow}$ ${\infty}$, while the cost of the previously fastest Karatsuba method is 9 multiplications in $F_{2^n}$. Consequently, the cost of the ${\eta}_T$ pairing computation is reduced by 14.3%.

  • PDF

LIE-ADMISSIBLE ALGEBRAS AND THE VIRASORO ALGEBRA

  • Myung, Hy-Chul
    • 대한수학회지
    • /
    • 제33권4호
    • /
    • pp.1123-1128
    • /
    • 1996
  • Let A be an (nonassociative) algebra with multiplication xy over a field F, and denote by $A^-$ the algebra with multiplication [x, y] = xy - yx$ defined on the vector space A. If $A^-$ is a Lie algebra, then A is called Lie-admissible. Lie-admissible algebras arise in various topics, including geometry of invariant affine connections on Lie groups and classical and quantum mechanics(see [2, 5, 6, 7] and references therein).

  • PDF

영어 수계를 이용한 디지털 신경망회로의 실현 (An Implementation of Digital Neural Network Using Systolic Array Processor)

  • 윤현식;조원경
    • 전자공학회논문지B
    • /
    • 제30B권2호
    • /
    • pp.44-50
    • /
    • 1993
  • In this paper, we will present an array processor for implementation of digital neural networks. Back-propagation model can be formulated as a consecutive matrix-vector multiplication problem with some prespecified thresholding operation. This operation procedure is suited for the design of an array processor, because it can be recursively and repeatedly executed. Systolic array circuit architecture with Residue Number System is suggested to realize the efficient arithmetic circuit for matrix-vector multiplication and compute sigmoid function. The proposed design method would expect to adopt for the application field of neural networks, because it can be realized to currently developed VLSI technology.

  • PDF

Massey-Omura 승산기를 위한 최적 정규원소 (The Optimal Normal Elements for Massey-Omura Multiplier)

  • 김창규
    • 정보보호학회논문지
    • /
    • 제14권3호
    • /
    • pp.41-48
    • /
    • 2004
  • 유한체의 곱셈과 나눗셈은 오류정정부호와 암호시스템에서 중요한 산술 연산이다. 유한체 GF(2$^{m}$ )의 원소를 표현하기 위해 다양한 기저가 사용되며 차수가 m인 GF(2)상의 원시다항식으로 구성할 수 있다. 정규기저를 사용하면 곱셈이나 곱셈 역원의 연산을 쉽게 수행할 수 있다. 정규기저 표현을 이용하는 Massey-Omura 승산기는 동일한 2진함수를 사용하여 몇 번의 순회치환으로 곱셈 또는 나눗셈이 수행되며 논리함수의 곱셈항 수가 승산기의 복잡도를 결정한다. 유한체의 정규기저는 항상 존재한다. 그러나 주어진 원시다항식에 대해 최적의 정규원소를 구하는 것은 쉽지 않다. 본 논문에서는 정규기저의 생성 방법을 고찰하고, Massey-Omura 승산기를 이용한 곱셈 또는 곱셈 역원의 계산에서 연산의 복잡도를 최소화할 수 있는 정규기저를 각 원시다항식에 대해 구하여, 최적의 정규원소와 곱셈항의 개수를 제시한다.

The *-Nagata Ring of almost Prüfer *-multiplication Domains

  • Lim, Jung Wook
    • Kyungpook Mathematical Journal
    • /
    • 제54권4호
    • /
    • pp.587-593
    • /
    • 2014
  • Let D be an integral domain with quotient field K, $\bar{D}$ denote the integral closure of D in K and * be a star-operation on D. In this paper, we study the *-Nagata ring of AP*MDs. More precisely, we show that D is an AP*MD and $D[X]{\subseteq}\bar{D}[X]$ is a root extension if and only if the *-Nagata ring $D[X]_{N_*}$ is an AB-domain, if and only if $D[X]_{N_*}$ is an AP-domain. We also prove that D is a P*MD if and only if D is an integrally closed AP*MD, if and only if D is a root closed AP*MD.