• 제목/요약/키워드: Field Measurement

검색결과 5,090건 처리시간 0.034초

Temperature field measurement of convective flow in a Hele-Shaw Cell with TLC and color image processing (TLC와 컬러화상처리를 이용한 Hele-Shaw Cell 내부 대류 온도장 측정)

  • Yun, Jeong-Hwan;Do, Deok-Hui;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제20권3호
    • /
    • pp.1114-1122
    • /
    • 1996
  • Variation of temperature field in a Hele-Shaw convection cell was measured by using a HSI true color image processing system and TLC(Thermochromic Liquid Crystal) solution. The relationship between the hue value of TLC color image and real temperature was obtained and this calibration result was used to measure the true temperature. The temperature field in the Hele-Shaw convection cell shows periodic characteristics of 45 sec at Ra = 9.3 * 10$\^$6/. The temperature field measurement technique developed in this study was proved to be a useful and powerful tool for analyzing the unsteady thermal fluid flows.

A study on the effect of the condition number in the magnetic field mapping of the Air-Core solenoid

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • 제17권2호
    • /
    • pp.31-35
    • /
    • 2015
  • Mapping is a useful tool in the magnetic field analysis and design. In some specific research area, such as the nuclear magnetic resonance (NMR) or the magnetic resonance imaging (MRI), it is important to map the magnetic field in the interesting space with high accuracy. In this paper, an indirect mapping method in the center volume of an air-core solenoid is presented, based on the solution of the Laplace's equation for the field. Through the mathematical analysis on the mapping calculation, we know that the condition number of the matrix, generated by the measurement points, can greatly affect the error of mapping result. Two different arrangement methods of the measurement points in field mapping are described in this paper: helical cylindrical line (HCL) method and parallel cylindrical line (PCL) method. According to the condition number, the HCL method is recommended to measure the field components using one probe. As a simple example, we mapped the magnetic fields in a MRI main magnet system. Comparing the results in the different methods, it is feasible and convenient to apply the condition number to reduce the error in the field mapping calculation. Finally, some guidelines were presented for the magnetic field mapping in the center volume of the air-core solenoid.

Wind field simulation over complex terrain under different inflow wind directions

  • Huang, Wenfeng;Zhang, Xibin
    • Wind and Structures
    • /
    • 제28권4호
    • /
    • pp.239-253
    • /
    • 2019
  • Accurate numericalsimulation of wind field over complex terrain is an important prerequisite for wind resource assessment. In this study, numerical simulation of wind field over complex terrain was further carried out by taking the complex terrain around Siu Ho Wan station in Hong Kong as an example. By artificially expanding the original digital model data, Gambit and ICEM CFD software were used to create high-precision complex terrain model with high-quality meshing. The equilibrium atmospheric boundary layer simulation based on RANS turbulence model was carried out in a flat terrain domain, and the approximate inflow boundary conditions for the wind field simulation over complex terrain were established. Based on this, numerical simulations of wind field over complex terrain under different inflow wind directions were carried out. The numerical results were compared with the wind tunnel test and field measurement data for land and sea fetches. The results show that the numerical results are in good agreement with the wind tunnel data and the field measurement data which can verify the accuracy and reliability of the numerical simulation. The near ground wind field over complex terrain is complex and affected obviously by the terrain, and the wind field characteristics should be fully understood by numerical simulation when carrying out engineering application on it.

Visualization of Permittivity Distribution in GFRP using Full-Field Scanning Free Space Measurement System (전영역 스캐닝 자유공간 측정 시스템을 이용한 GFRP의 유전율 분포 가시화)

  • Hyun, Jong-Min;Ahmed, Hasan;Lee, Jung-Ryul
    • Composites Research
    • /
    • 제31권3호
    • /
    • pp.99-103
    • /
    • 2018
  • This paper visualizes the full-field permittivity distribution at the standard specimens having known electromagnetic characteristics using a scanning free space measurement (SFSM) system. First, in the two Teflon specimens with different thicknesses, the real and loss tangent of permittivity could be measured and the results agreed to the theoretical and other measurement values. Then the system has been applied to Glass/epoxy and visualized different permittivity distribution depending on the material kind. Therefore, this approach will overcome the point measurement limitation of FSM and can be used for even sub-structural full-field electromagnetic evaluation of stealth and radome structures.

Field Measurement of Suspended Material Distribution at the River Confluence (하천 합류부에서의 부유입자 분포에 대한 현장측정)

  • Kwak, Sunghyun;Lee, Kyungsu;Cho, Hanil;Seo, Yongjae;Lyu, Siwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제37권2호
    • /
    • pp.467-474
    • /
    • 2017
  • Each river confluence has the inherent hydraulic and mixing characteristics coming from its bathymetry and topography. It is necessary to make the measurement covering the spatial extent of studying area in order to catch these 2-dimensional intrinsic characteristics. This study focuses to investigate the hydraulic and mixing characteristics at the confluence of Nakdong and Geumho River, from field measurement of flow, water quality, and suspended particle distribution with ADCP (Riversurveyor M9), multi-parameter water quality sonde (YSI6600V2), and submersible system for in-situ observations of particle size distribution and volume concentration (LISST : Laser In-Situ Scattering & Transmissometry), respectively. From the results, it can be found that the field measurement of suspended particle and water quality distribution can be the useful approach to catch the hydraulic and mixing characteristics at a river confluence.

Standard Field Generation Using a Micro-TEM Cell and Its Measurement Uncertainty Evaluation (Micro-TEM Cell을 사용한 표준 전자기장의 발생 및 측정불확도 평가)

  • Kang, Jin-Seob;Kim, Jeong-Hwan;Kang, Ung-Taek;Kang, No-Weon;Kang, Tae-Weon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제20권1호
    • /
    • pp.91-99
    • /
    • 2009
  • In this paper, a standard field generation method using a micro-TEM ceil is described and its measurement uncertainty is evaluated. The standard field generation system consists of an auto-leveling signal source, a micro-TEM cell operating up to 1.2 GHz, and a power measuring Instrument using a thermistor mount. Measurement results of a field strength key comparison (CCEM.RF-K20) for the field strength of 20 V/m at frequencies between 10 MHz and 1 GHz are presented for validating the standard field generation method.

Surface Temperature Measurement in Microscale with Temperature Sensitive Fluorescence (온도 민감 형광을 이용한 마이크로 스케일 표면온도 측정)

  • Jung Woonseop;Kim Sungwook;Kim Ho-Young;Yoo Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제30권2호
    • /
    • pp.153-160
    • /
    • 2006
  • A technique for measuring surface temperature field in micro scale is newly proposed, which uses temperature-sensitive fluorescent (TSF) dye coated on the surface and is easily implemented with a fluorescence microscope and a CCD camera. The TSF dye is chosen among mixtures of various chemical compositions including rhodamine B as the fluorescent dye to be most sensitive to temperature change. In order to examine the effectiveness of this temperature measurement technique, numerical analysis and experiment on transient conduction heat transfer for two different substrate materials, i. e., silicon and glass, are performed. In the experiment, to accurately measure the temperature with high resolution temperature calibration curves were obtained with very fine spatial units. The experimental results agree qualitatively well with the numerical data in the silicon and glass substrate cases so that the present temperature measurement method proves to be quite reliable. In addition, it is noteworthy that the glass substrate is more appropriate to be used as thermally-insulating locally-heating heater in micro thermal devices. This fact is identified in the temperature measuring experiment on the locally-heating heaters made on the wafer of silicon and glass substrates. Accordingly, this technique is capable of accurate and non-intrusive high-resolution measurement of temperature field in microscale.

Analysis of Measurement Data for Stability of Seashore Waste Landfills (해안 폐기물매립지 안정을 위한 계측자료 분석)

  • Jang, Yeon-Soo;Choi, Jong-Sig;Ryu, Hye-Rim;Kim, Dong-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.947-954
    • /
    • 2008
  • Waste landfills built on weak soils have the possibilities of the failure of slope and foundation due to the disposed waste loads. To ensure the landfill will sustain its stability within a limited site area, it's necessary to investigate and understand the characteristics of soft land by identifying the requirements for waste filling and by quantitative field measurement and management of landfills. In this paper, the stability analyses are performed using the field measurement data of Gimpo #2 Metropolitan Landfil. For the stability analysis, Tominaga-Hashimoto method and Kuriharh method, which may be able to manage the stability of the landfill quantitatively, are used.

  • PDF

The Bearing Capacity of Top Base Foundations in Soft Ground (연약지반상 팽이기초 적용에 따른 지지특성)

  • Kim, Chan-Kuk;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.401-414
    • /
    • 2010
  • Top Base Foundation(TBF) is a stabilization method for light weight structures particularly in the soft ground. It is widely used for the increment of bearing capacity and restraining settlement of foundations when the bearing capacity of ground is not enough. However, when the design values from exiting Japanese standard are compared with the observation values from the field measurement, the bearing capacity of exiting standard estimated smaller For this reason, it is necessary to establish more reasonable prediction technique considering to understand the behavior of TBF in soft ground. In this study, 1/5 scale model tests were performed in the laboratory. Also, full scale tests were carried out in order to investigate the behavior of TBF with various shapes. In addition, about 100 sites measurement data were evaluated to investigate the behavior of TBF in various ground conditions. Based on the results of the model tests and field measurement data, it was possible to establish more reasonable the bearing capacity equation of TBF considering various N-value of soil, the effect of underground water and failure shapes.

  • PDF

Micro-LIF measurement of microchannel flow

  • Kim Kyung Chun;Yoon Sang Youl
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.65-74
    • /
    • 2004
  • Measurement of concentration distributions of suspended particles in a micro-channel is out of the most crucial necessities in the area of Lab-on-a-chip to be used for various bio-chemical applications. One most feasible way to measure the concentration field in the micro-channel is using micro-LIF(Laser Induced Fluorescence) method. However, an accurate concentration field at a given cross plane in a micro-channel has not been successfully achieved so far due to various limitations in the light illumination and fluorescence signal detection. The present study demonstrates a novel method to provide an ultra thin laser sheet beam having five(5) microns thickness by use of a micro focus laser line generator. The laser sheet beam illuminates an exact plane of concentration measurement field to increase the signal to noise ratio and considerably reduce the depth uncertainty. Nile Blue A was used as fluorescent dye for the present LIF measurement. The enhancement of the fluorescent intensity signals was performed by a solvent mixture of water $(95\%)$ and ethanol (EtOH)/methanol (MeOH) $(5\%)$ mixture. To reduce the rms errors resulted from the CCD electronic noise and other sources, an expansion of grid size was attempted from $1\times1\;to\;3\times3\;or\;5\times5$ pixel data windows and the pertinent signal-to-noise level has been noticeably increased accordingly.

  • PDF