• Title/Summary/Keyword: Field Installation

Search Result 1,198, Processing Time 0.03 seconds

Installation of Induced Current Measurement Systems in Substations and Analysis of GIC Data during Geomagnetic Storms

  • Choi, Kyu-Cheol;Park, Mi-Young;Ryu, Youngsoo;Hong, Youngsu;Yi, Jong-Hyuk;Park, Sung-Won;Kim, Jae-Hun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.427-434
    • /
    • 2015
  • Coronal Mass Ejections (CME), which originate from active regions of the Sun's surface, e.g., sunspots, result in geomagnetic storms on Earth. The variation of the Earth's geomagnetic field during such storms induces surface currents that could cause breakdowns in electricity power grids. Hence, it is essential to both monitor Geomagnetically Induced Currents (GICs) in real time and analyze previous GIC data. In 2012, in order to monitor the variation of GICs, the Korean Space Weather Center (KSWC) installed an induced current measurement system at SINGAPYEONG Substation, which is equipped with 765 kV extra-high-voltage transformers. Furthermore, in 2014, two induced current measurement systems were installed on the 345 kV high-voltage transformers at the MIGEUM and SINPOCHEON substations. This paper reports the installation process of the induced current measurement systems at these three substations. Furthermore, it presents the results of both an analysis performed using GIC data measured at the SINGAPYEONG Substation during periods of geomagnetic storms from July 2013 through April 2015 and the comparison between the obtained GIC data and magnetic field variation (dH/dt) data measured at the Icheon geomagnetic observatory.

Design of Spontaneous Acoustic Field Reproducing System (능동형 음장조성시스템의 설계)

  • Kook, Chan;Jang, Gil-Soo;Jang, Gyung-Sung;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.611-614
    • /
    • 2005
  • The introduction of the sound based on the soundscape concept has the effect to offer comfortable sound environments at the public spaces by masking undesired ones and to identify the spaces. Sound installation, sound sculptor and the soundscape are used for these purpose, but the most important factors to be considered therein are to determine what kind of sounds to offer and how to adjust them to the changing circumstances. But, installing, maintaining and adjusting the soundscape system directly in the field will ensue numerous problems as well as high costs. And, even if it was epochal and novel when the soundscape is first installed at a space, new different sound environment is necessary to continue the effectiveness as time goes. Thus, this study aims at devising the instrument system that has the artificial intelligence, enables to remote control, with a great ease, numerous variables, reproduce most agreeable sound sources, and can produce the proper sound fit to the space automatically and spontaneously.

  • PDF

Study on the Synthesis of Graphene Nanowall by Controlling Electric Field in a Radio Frequency Plasma CVD Process (RF 플라즈마 CVD 프로세스의 전계제어에 의한 그래핀 나노월 성장 연구)

  • Han, SangBo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.45-51
    • /
    • 2014
  • This work carried out for the effective synthesis characteristics of graphene nanowall film by controlling the electric field in a RF plasma CVD process. For that, the bipolar bias voltage was applied to the substrate such as Si and glass materials for the best chemical reaction of positive and negative charges existing in the plasma. For supplying the seed formation sites on substrate and removing the oxidation layer on the substrate surface, the electron bombardment into substrates was performed by a positive few voltage in hydrogen plasma. After that, hydrocarbon film, which is not a graphene nanowall, was deposited on substrates under a negative bias voltage with hydrogen and methane gases. At this step, the film on substrates could not easily identify due to its transparent characteristics. However, the transparent film was easily changed into graphene nanowall by the final hydrogen plasma treatment process. The resultant raman spectra shows the existence of significant large 2D peaks corresponding to the graphene.

Vector Control of Single Phase Induction Motor using PV System (PV 시스템을 이용만 단상유도전동기의 벡터제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.49-58
    • /
    • 2009
  • This paper presents the vector control of single phase induction motor(SPIM) to operate water pumping system using PV system with a maximum power point tracking(MPPT). The water pumping system uses a variable speed SPIM driven a centrifugal pump by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage($V_{dq}$), current($I_{dq}$), speed of motor and torque.

Numerical Calculation for Grounding Impedance of a Horizontal Ground Electrode Based on the Electromagnetic Field Theory (전자계 이론을 기반으로 한 수평접지전극의 접지임피던스 수치계산)

  • Lee, Bok-Hee;Cho, Sung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.76-83
    • /
    • 2014
  • This paper deals with the numerical method of calculating the frequency-dependent impedances of grounding electrodes. The proposed electromagnetic field approach is based on the solutions to Maxwell's equations obtained from the method of moment in the frequency domain. In order to evaluate the quality of the proposed simulation method, the frequency-dependent impedances of horizontally-buried ground electrodes were presented. The program for calculating the current distributions and impedances of grounding electrodes was implemented in MATLAB. The grounding impedances of two 10m and 50m long horizontal ground electrodes were measured and simulated in the frequency range from 100Hz to 10MHz for easy analysis and comparison. Also the simulated results were compared with those calculated from a sophisticated computer program CDEGS (HIFREQ module). As a result, the resultant results of frequency-dependent impedances obtained by using the numerical simulation method proposed in this work are in good agreement with experimental data. The validity of the approach techniques was confirmed.

Research of Stresses Distribution and Loading Weight on Concrete Electric Pole Considering Field Condition (설치조건을 고려한 배전용 콘크리트전주의 응력분포 및 하중에 관한 연구)

  • Kim, Dong-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.183-188
    • /
    • 2004
  • A method of double-pole construction is developing to strengthen the mechanical intensity of the electric poles. Therefore the mechanical properties of the double-pole were researched in this paper. First, considering field special quality electric poles were established. In the next tensile force was applied and stress distribution and fatigue load were examined. When a base of the pole is concrete, mechanical intensity of the double-pole increased about 1.7 times compared a single pole. In the case of general soil base, the concrete base should be needed to expect the reinforcement effect of the double-pole.

Qualitative Assessment for Hazard on the Electric Power Installations of a Construction Field using FMEA (FMEA를 이용한 건설현장 전력설비의 위험성에 대한 정성적 평가)

  • Kim Doo-hyun;Lee Jong-ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.36-41
    • /
    • 2004
  • This paper presents an qualitative assessment for hazard on the electric power installations of a construction field using FMEL The power installations have the mission to maintain the highest level of service reliability on the works. The more capital the electric power invest the higher service reliability they plausibly will achieve. However, because of limited resources, how effectively budgets can be allocated to achieve service reliability as high as possible. The assessment typically generates recommendations for increasing component reliability, thus improving the power installation safety. The FMEA tabulates the failure modes of components and how their failure affects the power installations being considered. Tn order to estimate the risks of a failures, the FMEA presents criticality estimation or risk priority number using the severity, occurrence, and detectability. The results showed that the highest components of the risk priority number among components were condenser, transformer, MCCB and LA. And In case of the criticality estimation, the potential failure modes were abnormal temperature rise, insulation oil leakage, deterioration for the transformer, overcurrent for the MCCB and operation outage fir the LA.

A Study on the Harmonics Evaluation of Extra High Voltage Customers by Field Tests (실측에 의한 특고압 수용가의 고조파 평가에 관한 연구)

  • Kim, Kyung-Chul;Kim, You-June
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.50-55
    • /
    • 2007
  • A large steel industry which has nonlinear loads including electric arc furnaces is one of the extra high voltage customers. These nonlinear loads generate harmonic currents and create distortions on the sinusoidal voltage of the power system. Harmonic field measurements have shown that the harmonic contents of a waveform varies with time. A cumulative propablistic approach is the most commonly used method to solve time varying harmonics. In this paper the in varying harmonics of electric arc furnace loads are evaluated by international harmonic standards(IEC 61000-3-6, IEEE 519 and JIS C 61000-3-2).

Analysis of Breakdown Voltage Dispersion and Breakdown Process in Mineral Oil (광유 중 절연파괴전압의 분산과 절연파괴진전 과정의 분석)

  • Lim, Dong-Young;Park, Sung-Gyu;Park, Cheol-Ho;Kim, Ki-Chai;Lee, Kwang-Sik;Choi, Eun-Hyeok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.35-41
    • /
    • 2015
  • This paper presents a breakdown voltage and a process of breakdown progress in mineral oil under an quasi-uniform field with decomposition products which occur after the oil discharge. The breakdown voltage in the oil revealed the characteristics of dispersion regardless of an electrode gap. The cumulative probability distribution was used to analyze the dispersion of the breakdown voltage. In addition, the process of breakdown progress in the oil can be reasonably described by the electron breakdown theory based on both electrons emitted from the cathode and ions by field-aided dissociation of the oil. The proposed breakdown process will be used for the basic data to explain the behavior pattern of the decomposition product to cause the dispersion of the breakdown voltage.

A Study on the Luminous Environment Investigation of Subway Stations In SEOUL -Comparison with the Artificial Lighting Design and Daylighting Design- (서울시 지하철 역사의 조명환경 실태조사 -인공조명 디자인과 자연채공 병용디자인의 비교-)

  • Chung, Yu-Gun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.40-47
    • /
    • 2004
  • Recently, the utilization of subway stations for varied working spaces is beginning to receive more attention. However, due to feeling of closeness and rejection to the underground, a daylighting is useful to alleviate the complaints of subway environments. This paper aims to investigate and evaluate the luminous environments of subway stations with and without daylighting in Seoul. At the first stages, the field experiments are performed to estimate the illuminance levels of chosen three subway stations. And then, the interview and questionnaire surveys are conducted to evaluate the luminous atmospheres of them. As results, the daylighting effects to subway visual environments are analyzed. Also, the basic data for a daylighting design are suggested.