• Title/Summary/Keyword: Field Experimental Design

Search Result 1,255, Processing Time 0.029 seconds

An Experimental Study on Turbulent Characteristics of an Impinging Split-Triplet Injector

  • Kang, Shin-Jae;Ryu, Ki-Wahn;Kwon, Ki-Chul;Song, Bhum-Keun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.117-124
    • /
    • 2001
  • This paper presents turbulent characteristics of an impinging F-O-O-F type injector in which fuel ad oxidizer impinge on each other to atomize under the different momentum ratio. Water was used as an inert simulant liquid instead of fuel and oxidizer. The droplet size and velocity in the impinging spray flow field were measured using a PDPA. The gradient of the spray half-width(b$_2$) along the long-axis direction declined throughout the entire spray flow field with increasing the momentum ratio from 1.19 to 6.48. However, the gradient of the half-width(b$_1$) along the short-axis direction decreased with increasing the momentum ratio. The turbulence intensity and turbulent kinetic energy were converged into the center of the center of the initial region with increasing the momentum ratio. As the momentum ratio increased from MR=1.19 to MR=6.48, the turbulent shear stress decreased. The results of this study can be used for the design of an impinging type injector for liquid rackets.

  • PDF

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

Understanding radiation effects in SRAM-based field programmable gate arrays for implementing instrumentation and control systems of nuclear power plants

  • Nidhin, T.S.;Bhattacharyya, Anindya;Behera, R.P.;Jayanthi, T.;Velusamy, K.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1589-1599
    • /
    • 2017
  • Field programmable gate arrays (FPGAs) are getting more attention in safety-related and safety-critical application development of nuclear power plant instrumentation and control systems. The high logic density and advancements in architectural features make static random access memory (SRAM)-based FPGAs suitable for complex design implementations. Devices deployed in the nuclear environment face radiation particle strike that causes transient and permanent failures. The major reasons for failures are total ionization dose effects, displacement damage dose effects, and single event effects. Different from the case of space applications, soft errors are the major concern in terrestrial applications. In this article, a review of radiation effects on FPGAs is presented, especially soft errors in SRAM-based FPGAs. Single event upset (SEU) shows a high probability of error in the dependable application development in FPGAs. This survey covers the main sources of radiation and its effects on FPGAs, with emphasis on SEUs as well as on the measurement of radiation upset sensitivity and irradiation experimental results at various facilities. This article also presents a comparison between the major SEU mitigation techniques in the configuration memory and user logics of SRAM-based FPGAs.

Experimental Evaluation for Damping Ratio Limit of Railway Bridge according to Structure Types (철도교량 구조형식별 감쇠비 하한값 산정을 위한 시험적 연구)

  • Min, Rak-Ki;Sung, Deok-Yong;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.154-161
    • /
    • 2012
  • The damping ratio of railway bridge has become one of the most important issues in dynamic design and dynamic stability of railway bridge. In the present study, laboratory and field test were performed for railway bridges such as a twin I-shaped steel composite girder, PSC box, steel box, PSC, IPC, PRECOM, preflex. The damping ratio of railway bridge according to structure types was estimated by logarithmic decrement method. Therefore, magnitude, frequency and amplitude of load did not affect damping ratio of railway bridge. Also, damping ratio limit of steel composite and PSC bridges was evaluated in 1.0%.

Two-Phase Flow Field Simulation of Horizontal Steam Generators

  • Rabiee, Ataollah;Kamalinia, Amir Hossein;Hadad, Kamal
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.

Numerical Study of the Design Factors for Flow Analysis of the Automotive Defrost Nozzle (자동차 Defrost 노즐 유동의 설계인자에 대한 수치적 연구)

  • 박원규;배인호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.217-224
    • /
    • 2003
  • The frost and mist in the windshield disturb the sight of driver and passengers especially in winter. This possibly leads to safety problems. In order to export automobiles to the countries of North America, the safety regulation requires the frost of selected area should be completely melted in 30 minutes. The defrost pattern and time for melting of frost are fully dependent on the flow and temperature field near the windshield. Furthermore, the flow and temperature field near the windshield are dependent on the air discharged from defrost nozzle. The present work has been done for understanding the flow features of the discharged air and internal flow within the nozzle duct. The three dimensional Navier-Stokes code was used for performing the generic A/C duct flow analysis. The present results were nearly coincided with experimental data. To perform the parametric study of the effectiveness of the number of guide vanes, the discharge angle and the location of nozzle were changed. The ratio of volume flow rate through defrost nozzle and side exit were compared to investigate the influence of parameters on the effectiveness of defrost nozzle. The velocity profiles and flow patterns of the defrost nozzle duct were also analyzed.

A Numerical Approach for Lightning Impulse Flashover Voltage Prediction of Typical Air Gaps

  • Qiu, Zhibin;Ruan, Jiangjun;Huang, Congpeng;Xu, Wenjie;Huang, Daochun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1326-1336
    • /
    • 2018
  • This paper proposes a numerical approach to predict the critical flashover voltages of air gaps under lightning impulses. For an air gap, the impulse voltage waveform features and electric field features are defined to characterize its energy storage status before the initiation of breakdown. These features are taken as the input parameters of the predictive model established by support vector machine (SVM). Given an applied voltage range, the golden section search method is used to compute the prediction results efficiently. This method was applied to predict the critical flashover voltages of rod-rod, rod-plane and sphere-plane gaps over a wide range of gap lengths and impulse voltage waveshapes. The predicted results coincide well with the experimental data, with the same trends and acceptable errors. The mean absolute percentage errors of 6 groups of test samples are within 4.6%, which demonstrates the validity and accuracy of the predictive model. This method provides an effectual way to obtain the critical flashover voltage and might be helpful to estimate the safe clearances of air gaps for insulation design.

Implementation of a Fast Current Controller using FPGA (FPGA를 이용한 고속 전류 제어기의 구현)

  • Jung, Eun-Soo;Lee, Hak-Jun;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.339-345
    • /
    • 2007
  • This paper presents a design of an FPGA (Field Programmable Gate Array) -based currentcontroller. Using the nature of the high computational capability of FPGA, the digital delay due to the algorithm execution can be reduced. The control performance can be better than the conventional DSP (Digital Signal Processor)-based current controller. Moreover, this method does not need any delay compensation algorithm because the digital delay is physically diminished. Therefore, the bandwidth of the current controller can be extended by this method. The feasibility of this method is verified by several experimental results under the various conditions.

An Automated Process Planning System for Progressive Working of Electric Products (전기제품의 프로그레시브 가공을 위한 공정설계 자동화 시스템)

  • Kim, J. H.;Kim, C.;Choi, J. C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.198-206
    • /
    • 2000
  • This paper describes a research work of developing automated progressive process planning system for working electric products. An approach to the CAD system in based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of three main modules which are input and shape treatment flat pattern layout and strip layout module. Based on knowledge-based rules the system is design by considering several factors such as radius and angle of bend material and thickness of product complexities of blank geometry and punch profile bending sequence and availability of press. Strip layout drawing automatically generated by piercing with punch profiles divided into for external area is simulated in 3-D graphic forms including bending sequences for the product with piercing and bending. Results obtained using the modules enable the manufacture of electronic products to be more efficient in this field.

  • PDF

An automated CAD System of Product with Bending Constraints and Piercing for Progressive Working (구속을 갖는 굽힘 및 피어싱용 제품의 프로그레시브 가공을 위한 자동화된 CAD 시스템)

  • Choe, Jae-Chan;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.174-182
    • /
    • 1999
  • This paper describes a research work of developing a computer-aided design of product with bending constraints and piercing for progressive working. an approach to the CAD system is based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written AutoLISP on the AutoCAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, production feasibility check, and strip-layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, bending sequence, availability of press. Strip layout drawing generated by piercing with punch profiles divide into automatically for external area is shown into graphic forms, including bending sequences for the product with piercing and bending constraints. Results obtained using the modules enable the designer and manufacturer of piercing and bending dies to be more efficient in this field.

  • PDF