• Title/Summary/Keyword: Field Emission

Search Result 2,735, Processing Time 0.029 seconds

Polydopamine-mediated surface modifications of poly ʟ-lactic acid with hydroxyapatite, heparin and bone morphogenetic protein-2 and their effects on osseointegration

  • Yun, Young Jin;Kim, Han-Jun;Lee, Deok-Won;Um, Sewook;Chun, Heung Jae
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.244-254
    • /
    • 2018
  • Surface modified poly ${\text\tiny{L}}$-lactic acid (PLLA) samples with hydroxyapatite (HA), heparin and bone morphogenetic protein-2 (BMP-2) mediated by polydopamine (pDA) coating (PLLA/pDA/HA/Hep/BMP-2) were prepared, and their effects on the enhancements of bone formation and osseointegration were evaluated in vitro and in vivo as compared to PLLA, PLLA/pDA/HA, and PLLA/pDA/Hep/BMP-2. The changes in surface chemical compositions, morphologies and wettabilities were observed by X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and water contact angle measurements. Pre-coating of HA particles with pDA provided uniform and homogeneous anchoring of particles to PLLA surface. In addition, the strong ionic interaction between heparin and pDA led PLLA surface readily heparinized for loading of BMP-2. In vitro experiments revealed that the levels of alkaline phosphatase (ALP) activity, calcium deposition, and osteocalcin (OCN) gene expression were higher in MG-63 human osteosarcoma cell lines grown on PLLA/pDA/HA/Hep/BMP-2 than on control PLLA, PLLA/pDA/HA, and PLLA/pDA/Hep/BMP-2. In vivo studies using micro-computed tomography (micro-CT) also showed that PLLA/pDA/HA/Hep/BMP-2 screw exhibited greatest value of bone volume (BV) and bone volume/tissue volume (BV/TV) among samples. Histological evaluations with H&E and Von Kossa staining demonstrated that a combination of HA and BMP-2 contributed to the strong osseointegration.

High Speed Cu Filling into Tapered TSV for 3-dimensional Si Chip Stacking (3차원 Si칩 실장을 위한 경사벽 TSV의 Cu 고속 충전)

  • Kim, In Rak;Hong, Sung Chul;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.388-394
    • /
    • 2011
  • High speed copper filling into TSV (through-silicon-via) for three dimensional stacking of Si chips was investigated. For this study, a tapered via was prepared on a Si wafer by the DRIE (deep reactive ion etching) process. The via had a diameter of 37${\mu}m$ at the via opening, and 32${\mu}m$ at the via bottom, respectively and a depth of 70${\mu}m$. $SiO_2$, Ti, and Au layers were coated as functional layers on the via wall. In order to increase the filling ratio of Cu into the via, a PPR (periodic pulse reverse) wave current was applied to the Si chip during electroplating, and a PR (pulse reverse) wave current was applied for comparison. After Cu filling, the cross sections of the vias was observed by FE-SEM (field emission scanning electron microscopy). The experimental results show that the tapered via was filled to 100% at -5.85 mA/$cm^2$ for 60 min of plating by PPR wave current. The filling ratio into the tapered via by the PPR current was 2.5 times higher than that of a straight via by PR current. The tapered via by the PPR electroplating process was confirmed to be effective to fill the TSV in a short time.

Effects of HA/TiN Coating on the Electrochemical Characteristics of Ti-Ta-Zr Alloys (Ti-Ta-Zr합금의 전기화학적 특성에 미치는 HA/TiN 코팅의 영향)

  • Oh, Mi-Young;Kim, Won-Gi;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.691-699
    • /
    • 2008
  • Electrochemical characteristics of Ti-30Ta-xZr alloys coated with HA/TiN by using magnetron sputtering method were studied. The Ti-30Ta containing Zr(3, 7, 10 and 15wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and coating, and then coated with HA/TiN, respectively, by using DC and RF-magnetron sputtering method. The analyses of coated surface and coated layer were carried out by using optical microscope(OM), field emission scanning electron microscope(FE-SEM) and X-ray diffractometer(XRD). The electrochemical characteristics were examined using potentiodynamic (-1,500 mV~ + 2,000 mV) and A.C. impedance spectroscopy(100 kHz ~ 10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The microstructure of homogenized Ti-30Ta-xZr alloys showed needle-like structure. In case of homogenized Ti-30Ta-xZr alloys, a-peak was increased with increasing Zr content. The thickness of TiN and HA coated layer showed 400 nm and 100 nm, respectively. The corrosion resistance of HA/TiN-coated Ti-30Ta-xZr alloys were higher than that of the non-coated Ti-30TaxZr alloys, whic hindicate better protective effect. The polarization resistance($R_p$) value of HA/TiN coated Ti-30Ta-xZr alloys showed $8.40{\times}10^5{\Omega}cm^2$ which was higher than that of non-coated Ti-30Ta-xZr alloys.

Highly sensitive and selective NO2 gas sensor at low temperature based on SnO2 nanowire network (SnO2 나노와이어를 이용한 저온동작 고감도 고선택성 NO2 가스센서)

  • Kim, Yoojong;Bak, So-Young;Lee, Jeongseok;Lee, Se-Hyeong;Woo, Kyoungwan;Lee, Sanghyun;Yi, Moonsuk
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.175-180
    • /
    • 2021
  • In this paper, methods for improving the sensitivity of gas sensors to NO2 gas are presented. A gas sensor was fabricated based on an SnO2 nanowire network using the vapor-phase-growth method. In the gas sensor, the Au electrode was replaced with a fluorinedoped tin oxide (FTO) electrode, to achieve high sensitivity at low temperatures and concentrations. The gas sensor with the FTO electrode was more sensitive to NO2 gas than the sensor with the Au electrode: notably, both sensors were based on typical SnO2 nanowire network. When the Au electrode was replaced by the FTO electrode, the sensitivity improved, as the contact resistance decreased and the surface-to-volume ratio increased. The morphological features of the fabricated gas sensor were characterized in detail via field-emission scanning electron microscopy and X-ray diffraction analysis.

Evaluation of Impregnation and Mechanical Properties of Thermoplastic Composites with Different GF Content of GF/PP Commingled Fiber (유리섬유/폴리프로필렌 복합원사의 유리섬유 함량 변화에 따른 열가소성 복합재료의 함침 및 기계적 특성 평가)

  • Jang, Yeong-Jin;Kim, Neul-Sae-Rom;Kwon, Dong-Jun;Yang, Seong Baek;Yeum, Jeong Hyun
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.346-352
    • /
    • 2020
  • In mobility industries, the use of thermoplastic composites increased dynamically. In this study, the mechanical and impregnation properties of continuous glass fiber (GF)/polypropylene (PP) composite were evaluated with different GF contents. The GF/PP commingled fiber was manufactured with different GF contents and continuous GF/PP composite was manufactured using continuous compression molding process. Tensile, flexural, and impact test of specimens were evaluated with different GF contents. The fracture behavior of specimens was proved using field emission-scanning electron microscope images of fracture area and impregnation property was evaluated using dynamic mechanical analyzer and interlaminar shear strength. Finally, the GF/PP composite was the optimized mechanical and impregnation properties using 50 wt.% GF/PP commingled fiber.

Properties of the carbon electrode perovskite solar cells with various annealing processes (열처리 방법에 따른 카본전극 페로브스카이트 태양전지의 특성 변화)

  • Song, Ohsung;Kim, Kwangbea
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.26-32
    • /
    • 2021
  • The photovoltaic properties and microstructure changes were observed while perovskite solar cells (PSCs) with a fabricated carbon electrode were formed using the following annealing processes: hot-plate, oven, and rapid thermal annealing (RTA). Perovskite solar cells with a glass/FTO/compact TiO2/meso TiO2/meso ZrO2/carbon structure were prepared. The photovoltaic properties and microstructure changes in the PSCs were analyzed using a solar simulator, optical microscopy, and field emission scanning electron microscopy. An analysis of the photovoltaic properties revealed outstanding properties when RTA was applied to the cells. Microstructure analysis showed that perovskite was formed locally on the carbon electrode surface when hot-plate and oven annealing were applied. On the other hand, PSC with RTA showed a flat surface without extra perovskite agglomeration. Denser perovskite formed on the porous carbon electrode layer with RTA showed superior photovoltaic properties. These results suggest that the RTA process might be appropriate for the massive production of carbon electrode PSCs considering the processing time.

Study of Stabilization Process of PAN Precursor and its Characteristics Change by Plasma Treatment (플라즈마 처리 방법을 이용한 PAN 전구체 특성 변화 연구)

  • Kang, Hyo-Kyoung;Kim, Jung-Yeon;Kim, Hak-Yong;Choi, Yeong-Og
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2021
  • Commercialized carbon fiber obtained from polyacrylonitrile(PAN) precursor is subjected to oxidation stabilization at 180 to 300℃ in air atmosphere and carbonization process at 1600℃ or lower in inert gas atmosphere. Both of these processes use a lot of time and high energy, but are essential and important for producing high-performance carbon fibers. Therefore, in recent years, an alternative stabilization technology by being assisted with various other energy sources such as plasma, electron beam and microwave which can shorten the process time and lower energy consumption has been studied. In this study, the PAN precursor was stabilized by using plasma treatment and heat treatment continuously. The morphology, structural changes, thermal and physical properties were analyzed using Field emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD), Fourier transform infrared(FT-IR), Thermogravimetric analysis(TGA) and Favimat.

Evaluation of Meat from Native Chickens: Analysis of Biochemical Components, Fatty Acids, Antioxidant Dipeptides, and Microstructure at Two Slaughter Ages

  • Ali, Mahabbat;Lee, Seong-Yun;Park, Ji-Young;Nam, Ki-Chang
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.788-801
    • /
    • 2021
  • This study examined biochemical components, fatty acids, antioxidant dipeptides, and muscle fiber density of breast and thigh muscles from Korean new native chicken strains (A and B) at two slaughter ages, compared with white semi-broiler (W) or broilers. The pH values were different by chicken breed. The new native strains had the lowest fat content in the breast at 12 wk (p<0.05). Regardless of the muscles, A and B at 12 wk had higher levels of arachidonic acid (ARA; C20:4), docosahexaenoic acid (DHA; C22:6), and nervonic acid (C24:1) than broilers (p<0.05). A similar result was observed for the polyunsaturated fatty acids (PUFAs) and polyunsaturated and saturated fatty acids ratio (P/S) content in the breast. Irrespective of the muscles, A and B enriched with omega-3 fatty acids had a lower ω-6/ω-3 PUFA ratio than broilers (p<0.05) at 12 wk. Of the antioxidant di-peptides, the anserine contents were highest in A and B than in the W or broilers (p<0.05), regardless of the muscles and slaughter ages. Furthermore, the breast meat from A and B contained a higher muscle fiber density for both slaughter ages than the W and broilers (p<0.05). Based on these findings, even if the commercial birds (broilers or W) are raised under the similar environmental conditions as A and B, the new native chicken strains have distinct meat quality attributes, particularly higher ARA and DHA levels, lower ω-6/ω-3 PUFA ratio, and higher anserine contents.

Facile Synthesis of g-C3N4 Modified Bi2MoO6 Nanocomposite with Improved Photoelectronic Behaviors

  • Zhu, Lei;Tang, Jia-Yao;Fan, Jia-Yi;Sun, Chen;Meng, Ze-Da;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.593-600
    • /
    • 2021
  • Herein, a series of g-C3N4 modified Bi2MoO6 nanocomposites using Bi2MoO6 and melamine as original materials are fabricated via sintering process. For presynthesis of Bi2MoO6 an ultrasonic-assisted hydrothermal technique is researched. The structure and composition of the nanocomposites are characterized by Raman spectroscopy, X-ray diffraction (XRD), and high-resolution field emission scanning electron microscopy (SEM). The improved photoelectrochemical properties are studied by photocurrent density, EIS, and amperometric i-t curve analysis. It is found that the structure of Bi2MoO6 nanoparticles remains intact, with good dispersion status. The as-prepared g-C3N4/Bi2MoO6 nanocomposites (BMC 5-9) are selected and investigated by SEM analysis, which inhibits special morphology consisting of Bi2MoO6 nanoparticles and some g-C3N4 nanosheets. The introduction of small sized g-C3N4 nanosheets in sample BMC 9 is effective to improve the charge separation and transfer efficiency, resulting in enhancing of the photoelectric behavior of Bi2MoO6. The improved photoelectronic behavior of g-C3N4/Bi2MoO6 may be attributed to enhanced charge separation efficiency, photocurrent stability, and fast electron transport pathways for some energy applications.

Measurement of the Thermal Conductivity of a Polycrystalline Diamond Thin Film via Light Source Thermal Analysis

  • Kim, Hojun;Kim, Daeyoon;Lee, Nagyeong;Lee, Yurim;Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.665-671
    • /
    • 2021
  • A 1.8 ㎛ thick polycrystalline diamond (PCD) thin film layer is prepared on a Si(100) substrate using hot-filament chemical vapor deposition. Thereafter, its thermal conductivity is measured using the conventional laser flash analysis (LFA) method, a LaserPIT-M2 instrument, and the newly proposed light source thermal analysis (LSTA) method. The LSTA method measures the thermal conductivity of the prepared PCD thin film layer using an ultraviolet (UV) lamp with a wavelength of 395 nm as the heat source and a thermocouple installed at a specific distance. In addition, the microstructure and quality of the prepared PCD thin films are evaluated using an optical microscope, a field emission scanning electron microscope, and a micro-Raman spectroscope. The LFA, LaserPIT-M2, and LSTA determine the thermal conductivities of the PCD thin films, which are 1.7, 1430, and 213.43 W/(m·K), respectively, indicating that the LFA method and LaserPIT-M2 are prone to errors. Considering the grain size of PCD, we conclude that the LSTA method is the most reliable one for determining the thermal conductivity of the fabricated PCD thin film layers. Therefore, the proposed LSTA method presents significant potential for the accurate and reliable measurement of the thermal conductivity of PCD thin films.