• Title/Summary/Keyword: Fiducial Marks

Search Result 19, Processing Time 0.033 seconds

Automatic Identification of Fiducial Marks Existing on Aerial Photographs (항공사진에 포함된 기점 마크의 자동 인식)

  • 조성익;방기인
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.556-558
    • /
    • 2002
  • 항공사진에 포함된 기점 마크의 방사 및 기하 특성을 이용하여 마크의 중심 위치를 자동으로 인식하기 위한 방안을 제안한다. 마크를 포함하는 배경 영역의 방사 특성에 기반을 푼 전략에 근거하여 입력된 영상을 이치화한 다음 형태 연산자를 적용시켜 기전 마크가 있는 후보 영역을 추출한다. 기하 특성에 기반을 둔 전략에 근거하여 ▽$^2$G 필터링과 대칭성 강조 필터링을 적용시킨 후, 대칭이 가장 강하게 나타나는 위치인 마크의 중심 위치를 구한다. 66매의 기점 마크 영상에 대한 평가 결과 중심 위치가 1 화소의 정확도까지 얻어질 수 있다는 것을 확인할 수 있었다.

  • PDF

Measurement and Correction of PCB Alignment Error for Screen Printer Using Machine Vision (1) (머신비전을 이용한 PCB 스크린인쇄기의 정렬오차측정 및 위치보정 (1))

  • 신동원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.88-95
    • /
    • 2003
  • This paper presents the measurement and correction method of PCB alignment errors for PCB screen printer. Electronic equipment is getting smaller and yet must satisfy high performance standard. Therefore, there is a great demand for PCB with high density. However conventional PCB screen printer doesn't have enough accuracy to accommodate the demand fur high-resolution circuit pattern and high-density mounting capacity of electronic chips. It is because the alignment errors of PCB occur when it is loaded to the screen printer. Therefore, this study focuses on the development of the system which is able to measure and correct alignment errors with high-accuracy. An automatic optical inspection part measures the PCB alignment errors using machine vision, and the high-accuracy 3-axis stage makes correction for these errors. This system used two CCD cameras to get images of two fiducial marks of PCB. The geometrical relationship between PCB, cameras, and xy$\theta$ stage is derived, and analytical equations for alignment errors are also obtained. The unknown parameters including camera declining angles and etc. can be obtained by initialization process. Finally, the proposed algorithm is verified by experiments by using test bench.

Artificial Landmark based Pose-Graph SLAM for AGVs in Factory Environments (공장환경에서 AGV를 위한 인공표식 기반의 포즈그래프 SLAM)

  • Heo, Hwan;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.2
    • /
    • pp.112-118
    • /
    • 2015
  • This paper proposes a pose-graph based SLAM method using an upward-looking camera and artificial landmarks for AGVs in factory environments. The proposed method provides a way to acquire the camera extrinsic matrix and improves the accuracy of feature observation using a low-cost camera. SLAM is conducted by optimizing AGV's explored path using the artificial landmarks installed on the ceiling at various locations. As the AGV explores, the pose nodes are added based on the certain distance from odometry and the landmark nodes are registered when AGV recognizes the fiducial marks. As a result of the proposed scheme, a graph network is created and optimized through a G2O optimization tool so that the accumulated error due to the slip is minimized. The experiment shows that the proposed method is robust for SLAM in real factory environments.

A Study on the Improvement of Accuracy of Close-Range Photogrammetry Analysis by Using Non-metric Camera (비측량용(非測量用) 사진기(寫眞機)에 의(依)한 근접사진(近接寫眞) 해석(解析)의 정확도(正確度) 향상(向上)에 관(關)한 연구(研究))

  • Kang, Joon Mook;Oh, Won Jin;Han, Seung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.151-159
    • /
    • 1992
  • In close-range photogrammetry, to employ non-metric camera especially for the purpose of precise measurement, systematic errors must, first of all, be corrected as they have a great influence on accuracies of results. For it, fiducial marks was built in non-metric camera and the factors such as PPS, PPA, EFL, CFL, and radial lens distortion coefficients for each quadrant were calibrated through collimator test. Also, the coefficients of both radial and tangential lens distortion were calibrated from analytical plumb line method and therefore main systematic errors could be effectively corrected. Using the calibrated non-metric camera, close-range photogrammetry could be successfully accomplished and accuracies could be improved sharply.

  • PDF

Gross Error Detection and Determination of Exterior Orientation Elements in Non-metric Photos (비측량용(非測量用) 사진(寫眞)에서의 과대오차(過大誤差) 검출(檢出) 및 외부표정요소(外部標定要素) 결정(決定))

  • Yeu, Bock Mo;Sohn, Duke Jae;Park, Hong Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.125-132
    • /
    • 1987
  • The bundle adjustment used in photogrammetric data reduction is based on the collinearity condition. Photogrammetry has been used in many non-topographic applications. Due to the necessities of having fiducial marks and knowing initial approximations for interior and exterior orientation elements in bundle adjustment, it cannot be applied when non-metric cameras are used. Marzan and Karara develop the DLT(Direct Linear Transformation) program which directly transforms comparator coordinates into object space coordinates without approximate values. In this paper, several modifications of original DLT program have been made for accuracy improvement in close-range photogrammetry using non-metric cameras. In modified program, gross error detection method and computation of exterior orientation elements are incorporated, and more iterations are introdued.

  • PDF

Accuracy Evaluation of CyberKnife $Synchrony^{TM}$ Respiratory Tracking System Using Phantom (Phantom을 이용한 사이버나이프 $Synchrony^{TM}$ 호흡 추적장치의 정확성 평가)

  • Kim, Gha-Jung;Bae, Seok-Hwan;Lim, Chang-Seon;Kim, Chong-Yeal
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.137-143
    • /
    • 2009
  • This study was conducted to evaluate the accuracy of CyberKnife $Synchrony^{TM}$ respiratory tracking system which was applied to Stereotactic Radiosurgery (SRS) for moving tumors in chest and abdomen with breathing motion. For accurate evaluation, gold fiducial marks were implanted into a moving phantom. The moving phantom was a cube imbedding an acryl ball as a target. The acryl ball was prescribed to 20 Gy at 70% of isodose curve in a virtual treatment and radiochromic films were inserted into the acryl ball for dose verification and tracking accuracy evaluation. The evaluation of position tracking consists of two parts: fiducial mark tracking in a stationary phantom and $Synchrony^{TM}$ respiratory tracking in a moving phantom. Each measurement was done in three directions and was repeated to 5 times. Range of position error was 0.1957 mm to 0.6520 mm in the stationary phantom and 0.4405 mm to 0.7665 mm in the moving phantom. Average position error was 0.3926 mm and 0.5673 mm in the stationary phantom and the moving phantom respectively. This study evaluates the accuracy of CyberKnife $Synchrony^{TM}$ Respiratory tracking system, and confirms the usefulness when it's used for Stereotactic Radiosurgery of body organs.

Evaluation of Long-term Stability of Interior Orientation Parameters of a Non-metric Camera (비측량용 카메라 내부표정요소의 장기간 안정성 평가)

  • Jeong, Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.283-291
    • /
    • 2011
  • In case of metric cameras, not only fiducial marks but also various parameters related to camera lens are provided to users for the interior orientation process. The parameters have been acquired through precise camera calibration in laboratory by camera maker. But, in case of non-metric cameras, the interior orientation parameters should be determined in person by users through camera calibration with great number of control points. The interior orientation parameters of metric cameras are practically used for long time. But in case of non-metric cameras, the long-term stability of the interior orientation parameters have not been established. Generally, the interior orientation parameters of non-metric cameras are determined in every photogrammetric work. It's been an obstacle to use the non-metric camera in photogrammetric project because so many control points are required to get the interior orientation parameters. In this study, camera calibrations and photogrammetric observations using a non-metric camera have been implemented 25 times periodically for 6 months and the results have been analyzed. As a result, long-them stability of the interior orientation parameters of a non-metric camera is analyzed.

Pallet Measurement Method for Automatic Pallet Engaging in Real-Time (자동 화물처리를 위한 실시간 팔레트 측정 방법)

  • Byun, Sung-Min;Kim, Min-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.171-181
    • /
    • 2011
  • A vision-based method for positioning and orienting of pallets is presented in this paper, which guides autonomous forklifts to engage pallets automatically. The method uses a single camera mounted on the fork carriage instead of two cameras for stereo vision that is conventionally used for positioning objects in 3D space. An image back-projection technique for determining the orient of a pallet without any fiducial marks is suggested in tins paper, which projects two feature lines on the front plane of the pallet backward onto a virtual plane that can be rotated around a given axis in 3D space. We show the fact that the rotation angle of the virtual plane on which the back-projected feature lines are parallel can be used to describe the orient of the pallet front plane. The position of the pallet is determined by using ratio of the distance between the back-projected feature lines and their real distance on the pallet front plane. Through a test on real pallet images, we found that the proposed method was applicable to real environment practically in real-time.

Fabrication of passive-aligned optical sub-assembly for optical transceiver using silicon optical bench (실리콘 광학벤치를 사용한 수동정렬형 광송수신기용 광부모듈의 제작)

  • Lee, Sang-Hwan;Joo, Gwan-Chong;Hwang, nam;moon, Jong-Tae;Song, Min-Kyu;Pyun, Kwang-Eui;Lee, Yong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.510-515
    • /
    • 1997
  • Packaging takes an extremely important element of optical module cost due primarily to the added complication of alignment between semiconductor devices and optical fiber, and many efforts have been devoted on reducing the cost by eliminating the complicated optical alignment procedures in passive manner. In this study, we fabricated silicon optical benches on which the optical alignments are accomplished passively. To improve the positioning accuracy of a flip-chip bonded LD, we adopted fiducial marks and solder dams which are self-aligned with V-groove etch patterns, and a stand-off to control the height and to improve the heat dissipation of LD. Optical sub-assemblies exhibited an average efficiency of -11.75$\pm$1.75 dB(1$\sigma$) from the LD-to-single mode fiber coupling and an average sensitivity of -35.0$\pm$1.5 dBm from the fiber and photodetector coupling.

  • PDF