• Title/Summary/Keyword: Fiducial

Search Result 127, Processing Time 0.029 seconds

Study on Extending Sensing Range of Fiducial Marker using Tilt Camera (틸트 카메라를 이용한 기준 마커 인식 범위 확장을 위한 연구)

  • Kyon-Mo Yang;Jeonghoon Kwak;Kap-Ho Seo
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.197-202
    • /
    • 2023
  • This paper studies the method to extend the sensing range of a fiducial maker using a tilt camera. In the system that uses a fiducial marker to estimate their position on a map, the sensing range of the marker is an important issue. Although there are markers around, a robot with a fixed camera often misses nearby markers in the case that the viewing angle of the camera does not cover the sensing range of the marker. If the robot adjusts the viewing angle of a camera by adjusting the position information of the markers, this problem will be solved. The contribution of this paper is as follows. 1) Structural considerations for the tilting module of cameras attached to robots. 2) Tilting module control method considering the position of a marker and a robot. 3) Finally, verification of the differences in the sensing range of markers between the proposed system and the previous system.

Analysis of inter-fraction and intra-fraction errors during volumetric modulated arc therapy in Pancreas Ca (호흡 동조 췌장 암 용적 세기조절 회전 치료 시 Inter-fraction Intra-fraction 분석)

  • Jo, Young Pil;Seo, Dong Rin;Hong, Taek Kyun;Kang, Tae Yeong;Beck, Geum Mun;Hong, Dong Ki;Yun, In Ha;Kim, Jin San
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.247-256
    • /
    • 2014
  • Purpose : To assess target motion during radiotherapy by quantifying daily setup errors and inter-fractional and intra-fractional movements of pancreatic fiducials. Materials and Methods : Eleven patients were treated via stereotactic body radiotherapy (SBRT) with volumetric modulated arc therapy. Bony setup errors were calculated using cone beam computed tomography (CBCT). Inter-fractional and intrafractional fiducial (seed) motion was determined via cone beam computed tomography (CBCT) projections and orthogonal fluoroscopy. Results : Using an off-line correction protocol, setup errors were 0.0 (-1.7-4.0), 0.3 (-0.5-3.0), and 0.0 (-4.1-6.6) mm for the left-right, anterior-posterior, and superior-inferior directions respectively. Random inter-fractional setup errors in the mean fiducial positions were -0.1, -1.1, and -2.3 mm respectively. Intra-fractional fiducial margins were 9.9, 7.8, and 12.5 mm, respectively. Conclusion : Online inter-fractional and intra-fractional corrections based on daily kV images and CBCT expedites SBRT of pancreatic cancer. Importantly, inter-fractional and intra-fractional motion needs to be measured regularly during treatment of pancreatic cancer to account for variations in patient respiration.

Alignment System for Display Panel using Edge Feature (에지 특징을 이용한 디스플레이 패널 설비의 얼라인 시스템)

  • Lee, HoHun;Lee, DaeJong;Chun, MyungGeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.260-265
    • /
    • 2015
  • This paper proposes a alignment system using edge feature. An alignment system obtains the position and orientation of printed circuit board(PCB) or liquid crystal display(LCD) panel through the fiducial marks. Thus, it is the indicator of the system performance how accurate we detect the positions of the fiducial marks in the target image. Edges have the geometrical characteristics such as positions, lengths, and shapes. These features are suitable for finding the marks and have the advantages of lighting variations, model occlusion, as well as variations in scale and angle. The performance of the proposed system is validated through the alignment experiment using an display panel alignment system included X, Y axis, and rotatable stage.

Estimation of PTT (Pulse Transit Time) by Multirate Filtering Analysis (다중레이트 필터링 기법을 이용한 맥파전달시간 추정)

  • Kim, Hyun-Tae;Kim, Jeong-Hwan;Kim, Kyeong-Seop;Lee, Jae-Ho;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1020-1026
    • /
    • 2013
  • Multirate filtering process on the biological signals like Electrocardiogram (ECG) and Photoplethysmogram (PPG) can be defined as the digital signal processing algorithm in which the sampling rate varies to omit or interpolate the intermediate values between the sampled data. With this aim, we suggest a new multirate filtering algorithm by deleting the extraneous data to eliminate the unwanted degradations such as granular noise due to the usage of high sampling frequency and simultaneously to detect the fiducial features of ECG and PPG with reducing the complexity of resolving fiducial points such as R-peak, Pulse peak and Pulse Transit Time (PTT). After the experimental simulations performed, we can conclude the fact that we can detect the fiducial features of ECG and PPG signal in terms of R-peak, Pulse peak and PTT without the loss of accuracy even if we do not maintain the original sampling frequency.

Measurement and Correction of PCB Alignment Error for Screen Printer Using Machine Vision (2) (머신비전을 이용한 PCB 스크린인쇄기의 정렬오차측정 및 위치보정 (2))

  • 신동원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.96-104
    • /
    • 2003
  • This paper presents the measurement and correction method of PCB alignment errors for PCB screen printer. Electronic equipment is getting smaller and yet must satisfy high performance standard. Therefore, there is a great demand for PCB with high density. However conventional PCB screen printer doesn't have enough accuracy to accommodate the demand for high-resolution circuit pattern and high-density mounting capacity of electronic chips. It is because the alignment errors of PCB occur when it is loaded to the screen printer. Therefore, this study focuses on the development of the system which is able to measure and correct alignment errors with high-accuracy. An automatic optical inspection part measures the PCB alignment errors using machine vision, and the high-accuracy 3-axis stage makes correction for these errors. This system used two CCD cameras to get images of two fiducial marks of PCB. The centers of fiducial marks are obtained by using moment, gradient method. The first method is calculating the centroid by using first moment of blob, and the latter method is calculating the center of the circle whose equation is obtained by curve-fitting the boundaries of fiducial mark. The operating system used to implement the whole set-up is carried in Window 98 (or NT) environment. Finally we implemented this system to PCB screen printer.

Clinical Usefulness of Implanted Fiducial Markers for Hypofractionated Radiotherapy of Prostate Cancer (전립선암의 소분할 방사선치료 시에 위치표지자 삽입의 유용성)

  • Choi, Young-Min;Ahn, Sung-Hwan;Lee, Hyung-Sik;Hur, Won-Joo;Yoon, Jin-Han;Kim, Tae-Hyo;Kim, Soo-Dong;Yun, Seong-Guk
    • Radiation Oncology Journal
    • /
    • v.29 no.2
    • /
    • pp.91-98
    • /
    • 2011
  • Purpose: To assess the usefulness of implanted fiducial markers in the setup of hypofractionated radiotherapy for prostate cancer patients by comparing a fiducial marker matched setup with a pelvic bone match. Materials and Methods: Four prostate cancer patients treated with definitive hypofractionated radiotherapy between September 2009 and August 2010 were enrolled in this study. Three gold fiducial markers were implanted into the prostate and through the rectum under ultrasound guidance around a week before radiotherapy. Glycerin enemas were given prior to each radiotherapy planning CT and every radiotherapy session. Hypofractionated radiotherapy was planned for a total dose of 59.5 Gy in daily 3.5 Gy with using the Novalis system. Orthogonal kV X-rays were taken before radiotherapy. Treatment positions were adjusted according to the results from the fusion of the fiducial markers on digitally reconstructed radiographs of a radiotherapy plan with those on orthogonal kV X-rays. When the difference in the coordinates from the fiducial marker fusion was less than 1 mm, the patient position was approved for radiotherapy. A virtual bone matching was carried out at the fiducial marker matched position, and then a setup difference between the fiducial marker matching and bone matching was evaluated. Results: Three patients received a planned 17-fractionated radiotherapy and the rest underwent 16 fractionations. The setup error of the fiducial marker matching was $0.94{\pm}0.62$ mm (range, 0.09 to 3.01 mm; median, 0.81 mm), and the means of the lateral, craniocaudal, and anteroposterior errors were $0.39{\pm}0.34$ mm, $0.46{\pm}0.34$ mm, and $0.57{\pm}0.59$ mm, respectively. The setup error of the pelvic bony matching was $3.15{\pm}2.03$ mm (range, 0.25 to 8.23 mm; median, 2.95 mm), and the error of craniocaudal direction ($2.29{\pm}1.95$ mm) was significantly larger than those of anteroposterior ($1.73{\pm}1.31$ mm) and lateral directions ($0.45{\pm}0.37$ mm), respectively (p<0.05). Incidences of over 3 mm and 5 mm in setup difference among the fractionations were 1.5% and 0% in the fiducial marker matching, respectively, and 49.3% and 17.9% in the pelvic bone matching, respectively. Conclusion: The more precise setup of hypofractionated radiotherapy for prostate cancer patients is feasible with the implanted fiducial marker matching compared with the pelvic bony matching. Therefore, a less marginal expansion of planning target volume produces less radiation exposure to adjacent normal tissues, which could ultimately make hypofractionated radiotherapy safer.

Consideration of the Effect according to Variation of Material and Respiration in Cone-Beam CT (Cone-Beam CT에서 물질 및 호흡 변화가 영상에 미치는 영향에 대한 고찰)

  • Na, Jun-Young;Kim, Jung-Mi;Kim, Dae-Sup;Kang, Tae-Young;Baek, Geum-Mun;Kwon, Gyeong-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2012
  • Purpose: Image Guided Radiation Therapy (IGRT) has been carried out using On-Board Imager system (OBI) in Asan Medical Center. For this reason, This study was to analyze and evaluate the impact on Cone-Beam CT according to variation of material and respiration. Materials and Methods: This study was to acquire and analyze Cone-Beam CT three times for two material: Cylider acryl (lung equvalent material, diameter 3 cm), Fiducial Marker (using clinic) under Motion Phantom able to adjust respiration pattern randomly was varying period, amplitude and baseline vis-a-vis reference respiration pattern. Results: First, According to a kind of material, when being showed 100% in the acryl and 120% in the Fiducial Marker under the condition of same movement of the motion phantom. Second, According to the respiratory alteration, when being showed 1.13 in the baseline shift 1.8 mm and 1.27 in the baseline shift 3.3 mm for acryl. when being showed 1.01 in 1 sec of period and 1.045 in 2.5 sec of period for acryl. When being showed 0.86 in 0.7 times the standard of amplitude and 1.43 in 1.7 times the standard of amplitude for acryl. when being showed 1.18 in the baseline shift 1.8 mm and 1.34 in the baseline shift 3.3 mm for Fiducial Marker. when being showed 1.0 in 1 sec of period and 1.0 in 2.5 sec of period for Fiducial Marker. When being showed 0.99 in 0.7 times the standard of amplitude and 1.66 in 1.7 times the standard of amplitude for Fiducial Marker. Conclusion: The effect of image size of CBCT was 20% in the case of Fiducial marker. The impact of changes in breathing pattern was minimum 13% - maximum 43% for Arcyl, min. 18% - max. 66% for Fiducial marker. This difference makes serious uncertainty. So, Must be stabilized breathing of patient before acquiring CBCT. also must be monitored breathing of patient in the middle of acquire. If you observe considerable change of breathing when acquiring CBCT. After Image Guided, must be need to check treatment site using fluoroscopy. If a change is too big, re-acquiring CBCT.

  • PDF

Encryptions of ECG Signals by Using Fiducial Features (심전도 신호의 특징 값을 이용한 암호화)

  • Kim, Jeong-Hwan;Kim, Kyeong-Seop;Shin, Seung-Won;Ryu, Keun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2380-2385
    • /
    • 2011
  • With the advent of ubiquitous healthcare technology to provide a patient with the necessary medical services in anywhere and anytime scheme, the importance of securing safe communication without tampering the medical data by the unauthorized users is getting more emphasized. With this aim, a novel method for constructing encryption keys on the basis of biometrical measurement of electrocardiogram (ECG) is suggested in this study. The experiments on MIT/BIH database show that our proposed method can achieve safe communication by successfully ciphering and deciphering ECG data including premature ventricular contraction arrhythmia signal with compromising its fiducial features as biometric key to transmit the data via the internet network.

Fiducial mark alignment using distance transform (거리변환을 이용한 fiducial 마크 정렬 알고리즘)

  • Cui, Xue-Nan;Park, Eun-Soo;Choi, Hyo-Hoon;Kim, Hak-Il
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.442-446
    • /
    • 2010
  • 본 논문에서는 거리변환 기반의 정밀한 fiducial 마크 정렬 알고리즘을 제안한다. 거리변환은 물체의 중심에 가중치를 가지는 특성이 있는데 이는 AOI 공정에서 에칭, 이동과 같은 다양한 요소들로부터 획득되는 타겟영상에 대하여 강인하게 물체의 중심으로 매칭할 수 있도록 한다. 제안한 방법은 우선 입력 타겟영상에 대하여 이진화를 진행하고, 다음 모델과 타겟영상에 대하여 거리변환을 이용하여 거리특징을 추출하고, 추출된 모델과 타겟영상에 대한 거리특징을 NCC(Normalized Cross Correlation)를 이용하여 매칭한 후, 매칭 스코어에 대하여 Sub-pixel 분석을 진행하여 sub-pixel 레벨의 정확도를 가지도록 한다. 실험결과로부터 제안한 거리특징을 이용한 매칭 알고리즘이 기존의 픽셀 밝기 값을 이용한 매칭보다 강인하고 정확하게 매칭됨을 확인할 수 있었다.

  • PDF

Setup Verification in Stereotactic Radiotherapy Using Digitally Reconstructed Radiograph (DRR) (디지털화재구성사진(Digitally Reconstructed Radiograph)을 이용한 정위방사선수술 및 치료의 치료위치 확인)

  • Cho, Byung-Chul;Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.84-88
    • /
    • 1999
  • Purpose :To develop a method for verifying a treatment setup in stereotactic radiotherapy by ma- tching portal images to DRRs. Materials and Methods : Four pairs of orthogonal portal images of one patient immobilized by a thermoplastic mask frame for fractionated stereotactic radiotherapy were compared with DRRs. Portal images are obtained in AP (anteriorfposterior) and lateral directions with a target localizer box containing fiducial markers attached to a stereotactic frame. DRRs superimposed over a planned iso-center and fiducial markers are printed out on transparent films. And then, they were overlaid over onhogonal penal images by matching anatomical structures. From three different kind of objects (isgcenter, fiducial markers, anatomical structure) on DRRs and portal images, the displacement error between anatomical structure and isocenters (overall setup error), the displacement error between anatomical structure and fiducial markers (irnrnobiliBation error), and the displacement error between fiducial markers and isocenters (localization error) were measured. Results : Localization error were 1.5$\pm$0.3 mm (AP), 0.9$\pm$0.3 mm (lateral), and immobilization errors were 1.9$\pm$0.5 mm (AP), 1.9$\pm$0.4 mm (lateral). In addition, overall setup errors were 1.0$\pm$0.9 mm (AP), 1.3$\pm$0.4 mm (lateral). From these orthogonal displacement errors, maximum 3D displacement errors($\sqrt{(\DeltaAP)^{2}+(\DeltaLat)^{2}$)) were found to be 1.7$\pm$0.4 mm for localization, 2.0$\pm$0.6 mm for immobilization, and 2.3$\pm$0.7 mm for overall treatment setup. Conclusion : By comparing orthogonal portal images with DRRs, we find out that it is possible to verify treatment setup directly in stereotactic radiotherapy.

  • PDF