Acknowledgement
This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (IPET) through Smart Agri Products Flow Storage Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (322054-5)
References
- M. Betke and L. Gurvits, "Mobile Robot Localization using Landmarks," IEEE Transactions on Robotics and Automation, vol. 13, no. 2, pp. 251-263, Apr., 1997, DOI: 10.1109/70.563647.
- M. Kost'ak and A. Slaby, "Designing a Simple Fiducial Marker for Localization in Spatial Scenes Using Neural Networks," Sensors, vol. 21, no. 16, Aug., 2021, DOI: 10.3390/s21165407.
- G. Kang, D. Lee, and H. Shim, "3D Multi-floor Precision Mapping and Localization for Indoor Autonomous Robots," Journal of Korea Robotics Society, vol. 17, no. 1, pp. 25-31, Mar., 2022, DOI: 10.7746/jkros.2022.17.1.025.
- A, Babinec, L. Jurisica, P. Hubinsky, and F. Pchon, "Visual Localization of Mobile Robot using Artificial Markers," Procedia Engineering, vol. 96, pp. 1-9, 2014, DOI: 10.1016/j.proeng.2014.12.091.
- R. Yagfarov, M. Ivanou, and I. Afanasyev, "Map Comparison of Lidar-based 2D SLAM Algorithms using Precise Ground Truth," International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 2018, DOI: 10.1109/ICARCV.2018.8581131.
- S. Petkovic, L. Milic, M. Nikolic, D. Miskovic, and M. Rakovic, "Comparison of SLAM Algorithms on Omnidirectional Four Wheel Mobile Robot," International Conference IcETRAN, Novi Pazar, Serbia, 2022, [Online], https://www.etran.rs/2022/zbornik/ICETRAN-22_radovi/082-ROI1.5.pdf.
- R. Negenborn, "Robot Localization and Kalman Filters," M.S thesis Utrecht Univ., Utrecht, Netherlands, 2003, [Online], http://www.negenborn.net/kal_loc/thesis.pdf.
- P. K. Panigrahi and S. K. Bisoy, "Localization Strategies for Autonomous Mobile Robots: A review," Journal of King Saud University-Computer and Information Sciences, vol. 34, no, 8, pp. 6019-6039, Sept., 2021, DOI: 10.1016/j.jksuci.2021.02.015.
- M. Fiala, "Designing Highly Reliable Fiducial Markers," IEEE Transactions on Pattern analysis and machine intelligence, vol. 32, no. 7, pp. 1317-1324, Jul., 2009, DOI: 10.1109/TPAMI.2009.146.
- W. Lee and W. Woo, "Rectangular Marker Recognition using Embedded Context Information," HCI 2009, [Online], https://koreascience.kr/article/CFKO200925752343977.pdf.
- F. J. Romero-Ramire, R. Munoz-Salinas, and R. Medina-Carnicer, "Fractal Markers: A New Approach for Long-range Marker Pose Estimation under Occlusion," IEEE Access, vol. 7, pp. 169908- 169919, Nov., 2019, DOI: 10.1109/ACCESS.2019.2951204.
- J. Ahn, S. Shin, and J. Park, "Development of Localization using Artificial and Natural Landmark for Indoor Mobile Robots," Journal of Korea Robotics Society, vol. 11, no. 4, pp. 205-216, Jul., 2016, DOI: 10.7746/jkros.2016.11.4.205.
- D.-G. Gwak, K.-M. Yang, M.-R. Park, J. Hahm, J. Koo, J. Lee, and K.-H. Seo, "Marker-Based Method for Recognition of Camera Position for Mobile Robots," Sensors, vol. 21, no. 4, Feb., 2021, DOI: 10.3390/s21041077.
- H. Liu, N. Stoll, S. Junginger, and K. Thurow, "New Localization Strategy for Mobile Robot Transportation in Life Science Automation using StarGazer Sensor, Time series Modeling and Kalman Filter Processing," IEEE International Conference on Robotics and Biomimetics, Zhuhai, China, 2015, DOI: 10.1109/ROBIO.2015.7418761.
- L. Joseph, ROS Robotics projects, 2nd ed. Packt Publishing Ltd, 2017, [Online], https://www.packtpub.com/product/ros-roboticsprojects/9781783554713.
- cartographer-project/cartographer, [Online], https://github.com/cartographer-project/cartographer, Accessed: Jan. 26, 2023.