• Title/Summary/Keyword: Fibroblast growth factor-4

Search Result 114, Processing Time 0.029 seconds

Maintenance of Proliferation and Adipogenic Differentiation by Fibroblast Growth Factor-2 and Dexamethasone Through Expression of Hepatocyte Growth Factor in Bone Marrow-derived Mesenchymal Stem Cells

  • Oh, Ji-Eun;Eom, Young Woo
    • Biomedical Science Letters
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Several studies have investigated the various effects of dexamethasone (Dex) on the proliferation and differentiation of mesenchymal stem cells (MSCs). Previously, we reported that co-treatment with L-ascorbic acid 2-phosphate and fibroblast growth factor (FGF)-2 maintained differentiation potential in MSCs through expression of hepatocyte growth factor (HGF). In this study, we investigated the effects of co-treatment with FGF-2 and Dex on the proliferation and differentiation potential of MSCs during a 2-month culture period. Co-treatment with FGF-2 and Dex increased approximately a 4.7-fold higher accumulation rate of MSC numbers than that by FGF-2 single treatment during a 2-month culture period. Interestingly, co-treatment with FGF-2 and Dex increased expression of HGF and maintained adipogenic differentiation potential during this culture period. These results suggest that co-treatment with FGF-2 and Dex preserves the proliferation and differentiation potential during long-term culture.

The Effect of Ulmus Root-bark Dressing in Fibroblast Growth Factor and Vascular Endothelial Growth Factor of Induced Pressure Ulcer in Rats (느릅나무 근피드레싱이 쥐에 유발된 욕창의 섬유아세포성장인자와 혈관내피성장인자에 미치는 효과)

  • Na, Yeon Kyung
    • Journal of Korean Biological Nursing Science
    • /
    • v.15 no.4
    • /
    • pp.257-263
    • /
    • 2013
  • Purpose: The purpose of this study was to investigate the effect of Ulmus root-bark dressing in fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) of induced pressure ulcers in rats. Methods: 54 male Sprague-Dawley rats were used and randomly divided into 2 groups. The rats were anesthetized and pressure ulcers were induced at 140 mmHg for three hours, using a personally-designed pressing apparatus. Ulmus dressing was applied in the experimental group (n=27) and saline gauze dressing in the control group (n=27). Each of the dressings was changed every other day, and after a month, the wounds were examined by microscopy biweekly for 20 weeks. Results: After 4 weeks, the epidermis of the wounds was recovered, but inflammatory infiltration of the dermis was remained. After 6 weeks, inflammatory cells were diminished and the number of capillaries was decreased. Examined by immunofluorescence staining, the FGF positive cells in the experimental group changed negatively after 18 weeks, but the control group still existed even after 20 weeks. VEGF positive cells in the experimental group also changed negatively after 20 weeks, but the control group still existed. Conclusion: The findings of this study demonstrate that Ulmus dressing is effective in minimizing scar formation and inflammatory reaction by decreasing FGF and VEGF in the terminal phase of wound healing.

The Effect of Basic Fibroblast Growth Factor in Acellular Human Dermal Grafts in Rats (흰쥐에 시행한 무세포 인체 진피 이식에서의 Basic Fibroblast Growth Factor의 효과)

  • Lee, Hun-Joo;Kim, Yang-Woo;Cheon, Young-Woo
    • Archives of Plastic Surgery
    • /
    • v.38 no.5
    • /
    • pp.567-575
    • /
    • 2011
  • Purpose: Acellular human dermis is very useful implant for use in plastic and reconstructive surgery. However, the volume of acellular human dermis graft is known to decrease for a long time. Basic fibroblast growth factor (bFGF) is a polypeptide that enhances the collagen synthesis and angiogenesis. In the current study we examined whether bFGF could improve the survival of acellular human dermis ($SureDerm^{(R)}$) by increasing angiogenesis of the graft. Methods: Forty rats were divided into two groups (control and bFGF). A 2-mm thick piece of $SureDerm^{(R)}$ was cut into smaller pieces that were $15{\times}5$ mm in size. Two subcutaneous pockets were made on the back of each rat. Grafts sprayed with bFGF were implanted in the bFGF group and injected with bFGF after transplantation every 3 days for 2 weeks. In the control group, the grafts were treated with phosphate-buffered saline (PBS) instead of bFGF. Four days, and 1, 4, and 12 weeks after the implantation, the grafts were harvested and gross and histologic examinations were performed. Inflammation grade, graft thickness, neocollagen density, and neocapillary count were measured. Results: The bFGF group displayed more rapid accumulation of inflammatory cells with a higher density of neocapillaries, and increased active collagen synthesis. After 12 weeks, the thickness of the grafts in the control and bFGF groups was $75.15{\pm}4.80%$ and $81.79{\pm}5.72%$, respectively, in comparison to the thickness before transplantation. There was a statistically significant difference between both groups ($p$ <0.05). Conclusion: bFGF was effective in reducing the absorption of acellular human dermal grafts by increasing angiogenesis and accelerating engraftment. In conclusion, bFGF may be a good tool for use in acellular human dermal graft transplantation for reconstructive surgery involving soft-tissue defects.

Fibroblast Growth Factor 4 (FGF4) Expression in Malignant Skin Cancers (악성 피부 종양에서의 Fibroblast Growth Factor 4 (FGF4) 발현)

  • Cho, Moon-Kyun;Song, Woo-Jin;Kim, Chul-Han
    • Archives of Plastic Surgery
    • /
    • v.38 no.3
    • /
    • pp.217-221
    • /
    • 2011
  • Purpose: FGF4 (fibroblast growth factor 4) is a newly characterized gene which was found to be a transforming gene in several cancerous cells. FGF4 expression and amplification has been subsequently observed in several human cancers including stomach cancer, breast cancer, head and neck squamous cell carcinoma, lung cancer and bladder cancer. This study was designed to measure the protein expression of FGF4 in malignant skin cancers. Methods: We examined 8 normal skin tissues and 24 malignant skin tumor tissues which were 8 malignant melanomas, 8 squamous cell carcinomas and 8 basal cell carcinomas. The specimens were analyzed for the protein expression of FGF4 using immunohistochemical staining. To evaluate the amount of expression of FGF4, the histochemical score (HSCORE) was used. Results: FGF4 was expressed more intensely in malignant melanoma, followed by SCC and BCC in immunohistochemistry. The average HSCORE was 0.01 for normal skin, 2.02 for malignant melanoma, 1.28 for squamous cell carcinoma, and 0.27 for basal cell carcinoma, respectively. The expression of FGF4 in malignant melanoma and squamous cell carcinoma was increased in comparison with normal tissues and basal cell cancer, and the difference was statistically significant (p<0.05). The difference between malignant melanoma and squamous cell carcinoma was not statistically significant. Conclusion: These findings provide evidences that the expression of FGF4 plays an important role in malignant melanoma and squamous cell carcinoma progressions. This article demonstrates expression of FGF4 in human skin malignant tumors, and suggests that FGF4 is more expressed in highly aggressive skin tumors.

PAMAM Dendrimer Conjugated with N-terminal Oligopeptides of Mouse Fibroblast Growth Factor 3 as a Novel Gene Carrier

  • Jung, Jinwoo;Lee, Jeil;Kim, Tae-Hun;Yang, Bong Suk;Lee, Eunji;Kim, Youn-Joong;Park, Jong-Sang;Choi, Joon Sig
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1036-1042
    • /
    • 2014
  • In this study, we introduced the RRLR oligopeptide sequences on the surface of polyamidoamine (PAMAM) dendrimer and characterized the physical properties and gene carrier activity of the novel polymer using HEK 293, NIH3T3, and HeLa cells. The RRLR peptide sequences were derived from a mouse fibroblast growth factor 3 (FGF3) protein containing a bipartite NLS motif. The entire sequence of FGF3 is RLRRDAGGRGGVYEHLGGAPRRRK and it has two functional sequences RLRR and RRRK at N-terminus and C-terminus, respectively. In particular, PAMAM G4-RRLR conferred enhanced transfection efficiency and lower cytotoxicity compared with those of PEI 25 kDa, PAMAM G4-R, and PAMAM G4 in various cell lines. These results suggest that the introduction of N-terminal oligopeptides of FGF3 on the surface of PAMAM holds promise as an effective non-viral gene delivery carrier for gene therapy.

Stimulation of the Extracellular Matrix Production in Dermal Fibroblasts by Areca catechu Extract (진피섬유모세포에서 대복피추출물의 세포외기질 합성 촉진 효과)

  • Lee, Min-Ho;Kim, Hyung-Jin;Jung, Hyun-Ah;Lee, Young-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1857-1862
    • /
    • 2013
  • Dermal fibroblasts produce the many components of the extracellular matrix (ECM) that are needed to maintain connective tissue integrity and repair tissue injuries. This study investigated the effects of Areca catechu extract (ACE) on dermal fibroblast cell activation. Cultured human dermal fibroblasts were treated with ACE, and then ECM production was determined by ELISA, Western blot and RT-PCR. ACE significantly accelerated the production of type 1 collagen, fibronectin, and transforming growth factor (TGF)-${\beta}1$ by ELISA and type 1 collagen by Western blot assay. ACE also increased the gene expression of COL1A1, TGF-${\beta}1$, keratinocyte growth factor (KGF) and insulin growth factor (IGF)-1. These results suggest that ACE has the potential to stimulate ECM production and that it might be suitable for maintaining skin texture.

Comparison of Bone Marrow Stromal Cells with Fibroblasts in Wound Healing Accelerating Growth Factor Secretion (골수기질세포 및 섬유아세포의 창상치유 촉진 성장인자 분비능 비교)

  • Kim, Se-Hyun;Han, Seung-Kyu;Yoon, Tae-Hwan;Kim, Woo-Kyung
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • Cryopreserved fibroblast implants represent a major advancement for healing of chronic wounds. Bone marrow stromal cells, which include the mesenchymal stem cells, have a low immunity-assisted rejection and are capable of expanding profoundly in a culture media. Therefore, they have several advantages over fibroblasts in clinical use. The ultimate goal of this study was to compare the wound healing accelerating growth factor secretion of the bone marrow stromal cells with that of the fibroblasts and this pilot study particularly focuses on the growth factor secretion to accelerate wound healing. Bone marrow stromal cells and fibroblasts were isolated from the same patients and grown in culture. At 1, 3, and 5 days post-incubating, secretion of basic fibroblast growth factor(bFGF), vascular endothelial growth factor (VEGF), and transforming growth factor beta(TGF-${\beta}$) were compared. In TGF-${\beta}$ secretion fibroblasts showed 12~21% superior results than bone marrow stromal cells. In contrast, bFGF levels in the bone marrow stromal cells were 47~89% greater than that in fibroblasts. The VEGF levels of the bone marrow stromal cells was 7~12 fold greater than that of the fibroblasts. Our results suggest that the bone marrow stromal cells have great potential for wound healing accelerating growth factor secretion.

Regulation of Transforming Growth Factor ${\beta}1$, Platelet-Derived Growth Factor, and Basic Fibroblast Growth Factor by Silicone Gel Sheeting in Early-Stage Scarring

  • Choi, Jaehoon;Lee, Eun Hee;Park, Sang Woo;Chang, Hak
    • Archives of Plastic Surgery
    • /
    • v.42 no.1
    • /
    • pp.20-27
    • /
    • 2015
  • Background Hypertrophic scars and keloids are associated with abnormal levels of growth factors. Silicone gel sheets are effective in treating and preventing hypertrophic scars and keloids. There has been no report on the change in growth factors in the scar tissue following the use of silicone gel sheeting for scar prevention. A prospective controlled trial was performed to evaluate whether growth factors are altered by the application of a silicone gel sheet on a fresh surgical scar. Methods Four of seven enrolled patients completed the study. Transforming growth factor (TGF)-${\beta}1$, platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF) were investigated immunohistochemically in biopsies taken from five scars at 4 months following surgery. Results In both the epidermis and the dermis, the expression of TGF-${\beta}1$ (P=0.042 and P=0.042) and PDGF (P=0.043 and P=0.042) was significantly lower in the case of silicone gel sheet-treated scars than in the case of untreated scars. The expression of bFGF in the dermis was significantly higher in the case of silicone gel sheet-treated scars than in the case of untreated scars (P=0.042), but in the epidermis, the expression of bFGF showed no significant difference between the groups (P=0.655). Conclusions The levels of TGF-${\beta}1$, PDGF, and bFGF are altered by the silicone gel sheet treatment, which might be one of the mechanisms of action in scar prevention.

The Effect of decalcified Root Surface as PDGF Carrier (PDGF 함유매개체로서 탈회된 치근면의 효과)

  • Woo, Hyo-Sang;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.4
    • /
    • pp.889-905
    • /
    • 1996
  • It is known that growth factors function as potent biologic mediators regulating numerous activities of wound healing via cell proliferation, migration and extracellular matrix formation and they also promote periodontal regeneration. But, method of growth factor application is controversial yet. So purpose of this study is to evaluate the effect of demineralized root surface as one of method of growth factor application. The ginigival fibroblasts were primary cultured and fifth or sixth subpassages were used in these experiments. In first experiment, root surface blocks demineralized with 100mg/ml tetracycline for 5 minutes and pH 1 citric acid for 3 minutes(experimental groups) and nonteminerilized root surface blocks (control groups) were placed in 100ng/ml PDGF-BB for 5 minutes. Then the cells were seeded on each root surface blocks and cultured for 6, 24, 48, 72 hours. In second experiment, root surface blocks deminerilized with tetracycline and citric acid and nondemineralized root surface blocks were placed in 200ng/ml PDGF-BB for 5 minutes and another non-demineralized root surfcae blocks were placed in DMEM without PDGF-BB. At 1, 2, 4, 6, 8 days, the cells were seeded in 24-well plate and using of each eluent, cultured for 72 hours. The results of the four determinants were presented as mean and S.D.. The results were as follows : The attachment and proliferation of human gingival fibroblast on root surface were more increased when PDGF-BB was applicated on root surfrace demineralized with tetracycline or citric acid than non-demineralized root surface. And, in comparision tetracycline with citric acid, there were more attachment and proliferation of human gingival fibroblast on root surface demineralized with tetracycline than citric acid, and proliferation of human gingival fibroblast on demineralized root surface was increased time dependently 1 day to 3 days. In second experiment using eluent, proliferation of human gingival fibroblast was more increased to 6 days when human gingival fibroblast was cultured in eluent that PDGF-BB was applicated on demineralized root surface than two control groups, and degree of proliferation was decreased time dependently 1 day to 6 days. Proliferation of human gingival fibroblast cultured in eluent without PDGF-BB was constant 1 day to 6 days. After 6 days, degree of proliferation of human gingival fibroblast was similar in four groups. This means that release duration of PDGF-BB from demineralized root surface is 6 days. And in comparision tetracycline with citric acid, there was more proliferation of human gingival fibroblast in tetracycline-treated group than citric acid. In conclusion, demineralized root surface as primary site for PDGF-BB application, especially demineralized with tetracycline has important roles in attachment and proliferation of human gingival fibroblast, and may be useful clinical applications in periodontal regenerative procedures.

  • PDF

Enhancing Dermal Matrix Regeneration and Biomechanical Properties of $2^{nd}$ Degree-Burn Wounds by EGF-Impregnated Collagen Sponge Dressing

  • Cho Lee Ae-Ri
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1311-1316
    • /
    • 2005
  • To better define the relationship between dermal regeneration and wound contraction and scar formation, the effects of epidermal growth factor (EGF) loaded in collagen sponge matrix on the fibroblast cell proliferation rate and the dermal mechanical strength were investigated. Collagen sponges with acid-soluble fraction of pig skin were prepared and incorporated with EGF at 0, 4, and 8 $\mu$g/1.7 $cm^{2}$. Dermal fibroblasts were cultured to 80$\%$ confluence using DMEM, treated with the samples submerged, and the cell viability was estimated using MTT assay. A deep, $2^{nd}$ degree- burn of diameter 1 cm was prepared on the rabbit ear and the tested dressings were applied twice during the 15-day, post burn period. The processes of re-epithelialization and dermal regeneration were investigated until the complete wound closure day and histological analysis was performed with H-E staining. EGF increased the fibroblast cell proliferation rate. The histology showed well developed, weave-like collagen bundles and fibroblasts in EGF-treated wounds while open wounds showed irregular collagen bundles and impaired fibroblast growth. The breaking strength (944.1 $\pm$ 35.6 vs. 411.5 $\pm$ 57.0 Fmax, $gmm^{-2}$) and skin resilience (11.3 $\pm$ 1.4 vs. 6.5 $\pm$ 0.6 mJ/$mm^{2}$) were significantly increased with EGF­treated wounds as compared with open wounds, suggesting that EGF enhanced the dermal matrix formation and improved the wound mechanical strength. In conclusion, EGF-improved dermal matrix formation is related with a lower wound contraction rate. The impaired dermal regeneration observed in the open wounds could contribute to the formation of wound contraction and scar tissue development. An extraneous supply of EGF in the collagen dressing on deep, $2^{nd}$ degree-burns enhanced the dermal matrix formation.